
www.allitebooks.com

http://www.allitebooks.org

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of	ePUB	and
its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or	app
settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize	often
include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and	figures
that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings	and
features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

www.allitebooks.com

http://www.allitebooks.org

Oracle®	PL/SQL	by	Example
Fifth	Edition

Benjamin	Rosenzweig
Elena	Rakhimov

Upper	Saddle	River,	NJ	•	Boston	•	Indianapolis	•	San	Francisco
New	York	•	Toronto	•	Montreal	•	London	•	Munich	•	Paris	•	Madrid

Capetown	•	Sydney	•	Tokyo	•	Singapore	•	Mexico	City

www.allitebooks.com

http://www.allitebooks.org

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	the
publisher	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	with	initial
capital	letters	or	in	all	capitals.

The	authors	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no
expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

Visit	us	on	the	Web:	informit.com/ph

Library	of	Congress	Cataloging-in-Publication	Data
Rosenzweig,	Benjamin.
				Oracle	PL/SQ®	by	example	/	Benjamin	Rosenzweig,	Elena	Rakhimov.—Fifth	edition.
								pages				cm
				Includes	index.
				ISBN	978-0-13-379678-0	(pbk.	:	alk.	paper)—ISBN	0-13-379678-7	(pbk.	:	alk.	paper)
				1.	PL/SQL	(Computer	program	language)	2.	Oracle	(Computer	file)	3.	Relational
databases.
I.	Rakhimov,	Elena	Silvestrova.	II.	Title.
			QA76.73.P258R68	2015
			005.75’6—
dc23																																																																																																								2014045792

Copyright	©	2015	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected
by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	likewise.	To	obtain	permission	to	use
material	from	this	work,	please	submit	a	written	request	to	Pearson	Education,	Inc.,
Permissions	Department,	One	Lake	Street,	Upper	Saddle	River,	New	Jersey	07458,	or	you
may	fax	your	request	to	(201)	236-3290.

ISBN-13:	978-0-13-379678-0
ISBN-10:	0-13-379678-7

Text	printed	in	the	United	States	on	recycled	paper	at	RR	Donnelley	in	Crawfordsville,
Indiana.
First	printing,	February	2015

www.allitebooks.com

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/ph
http://www.allitebooks.org

To	my	parents,	Rosie	and	Sandy	Rosenzweig,
for	their	love	and	support
—Benjamin	Rosenzweig

To	my	family,	for	their	excitement	and	encouragement
—Elena	Rakhimov

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface

Acknowledgments

About	the	Authors

Introduction	to	PL/SQL	New	Features	in	Oracle	12c

Invoker’s	Rights	Functions	Can	Be	Result-Cached

More	PL/SQL-Only	Data	Types	Can	Cross	the	PL/SQL-to-SQL	Interface
Clause

ACCESSIBLE	BY	Clause

FETCH	FIRST	Clause

Roles	Can	Be	Granted	to	PL/SQL	Packages	and	Stand-Alone	Subprograms

More	Data	Types	Have	the	Same	Maximum	Size	in	SQL	and	PL/SQL

Database	Triggers	on	Pluggable	Databases

LIBRARY	Can	Be	Defined	as	a	DIRECTORY	Object	and	with	a
CREDENTIAL	Clause

Implicit	Statement	Results

BEQUEATH	CURRENT_USER	Views

INHERIT	PRIVILEGES	and	INHERIT	ANY	PRIVILEGES	Privileges

Invisible	Columns

Objects,	Not	Types,	Are	Editioned	or	Noneditioned

PL/SQL	Functions	That	Run	Faster	in	SQL

Predefined	Inquiry	Directives	$$PLSQL_UNIT_OWNER	and
$$PLSQL_UNIT_TYPE

Compilation	Parameter	PLSQL_DEBUG	Is	Deprecated

Chapter	1	PL/SQL	Concepts

Lab	1.1:	PL/SQL	Architecture

PL/SQL	Architecture

PL/SQL	Block	Structure

How	PL/SQL	Gets	Executed

Lab	1.2:	PL/SQL	Development	Environment

Getting	Started	with	SQL	Developer

Getting	Started	with	SQL*Plus

www.allitebooks.com

http://www.allitebooks.org

Executing	PL/SQL	Scripts

Lab	1.3:	PL/SQL:	The	Basics

DBMS_OUTPUT.PUT_LINE	Statement

Substitution	Variable	Feature

Summary

Chapter	2	PL/SQL	Language	Fundamentals

Lab	2.1:	PL/SQL	Programming	Fundamentals

PL/SQL	Language	Components

PL/SQL	Variables

PL/SQL	Reserved	Words

Identifiers	in	PL/SQL

Anchored	Data	Types

Declare	and	Initialize	Variables

Scope	of	a	Block,	Nested	Blocks,	and	Labels

Summary

Chapter	3	SQL	in	PL/SQL

Lab	3.1:	DML	Statements	in	PL/SQL

Initialize	Variables	with	SELECT	INTO

Using	the	SELECT	INTO	Syntax	for	Variable	Initialization

Using	DML	in	a	PL/SQL	Block

Using	a	Sequence	in	a	PL/SQL	Block

Lab	3.2:	Transaction	Control	in	PL/SQL

Using	COMMIT,	ROLLBACK,	and	SAVEPOINT

Putting	Together	DML	and	Transaction	Control

Summary

Chapter	4	Conditional	Control:	IF	Statements

Lab	4.1:	IF	Statements

IF-THEN	Statements

IF-THEN-ELSE	Statement

Lab	4.2:	ELSIF	Statements

Lab	4.3:	Nested	IF	Statements

Summary

www.allitebooks.com

http://www.allitebooks.org

Chapter	5	Conditional	Control:	CASE	Statements

Lab	5.1:	CASE	Statements

CASE	Statements

Searched	CASE	Statements

Lab	5.2:	CASE	Expressions

Lab	5.3:	NULLIF	and	COALESCE	Functions

NULLIF	Function

COALESCE	Function

Summary

Chapter	6	Iterative	Control:	Part	I

Lab	6.1:	Simple	Loops

EXIT	Statement

EXIT	WHEN	Statement

Lab	6.2:	WHILE	Loops

Using	WHILE	Loops

Premature	Termination	of	the	WHILE	Loop

Lab	6.3:	Numeric	FOR	Loops

Using	the	IN	Option	in	the	Loop

Using	the	REVERSE	Option	in	the	Loop

Premature	Termination	of	the	Numeric	FOR	Loop

Summary

Chapter	7	Iterative	Control:	Part	II

Lab	7.1:	CONTINUE	Statement

Using	CONTINUE	Statement

CONTINUE	WHEN	Statement

Lab	7.2:	Nested	Loops

Using	Nested	Loops

Using	Loop	Labels

Summary

Chapter	8	Error	Handling	and	Built-in	Exceptions

Lab	8.1:	Handling	Errors

Lab	8.2:	Built-in	Exceptions

www.allitebooks.com

http://www.allitebooks.org

Summary

Chapter	9	Exceptions

Lab	9.1:	Exception	Scope

Lab	9.2:	User-Defined	Exceptions

Lab	9.3:	Exception	Propagation

Re-raising	Exceptions

Summary

Chapter	10	Exceptions:	Advanced	Concepts

Lab	10.1:	RAISE_APPLICATION_ERROR

Lab	10.2:	EXCEPTION_INIT	Pragma

Lab	10.3:	SQLCODE	and	SQLERRM

Summary

Chapter	11	Introduction	to	Cursors

Lab	11.1:	Types	of	Cursors

Making	Use	of	an	Implicit	Cursor

Making	Use	of	an	Explicit	Cursor

Lab	11.2:	Cursor	Loop

Processing	an	Explicit	Cursor

Making	Use	of	a	User-Defined	Record

Making	Use	of	Cursor	Attributes

Lab	11.3:	Cursor	FOR	LOOPs

Making	Use	of	Cursor	FOR	LOOPs

Lab	11.4:	Nested	Cursors

Processing	Nested	Cursors

Summary

Chapter	12	Advanced	Cursors

Lab	12.1:	Parameterized	Cursors

Cursors	with	Parameters

Lab	12.2:	Complex	Nested	Cursors

Lab	12.3:	FOR	UPDATE	and	WHERE	CURRENT	Cursors

FOR	UPDATE	Cursor

FOR	UPDATE	OF	in	a	Cursor

www.allitebooks.com

http://www.allitebooks.org

WHERE	CURRENT	OF	in	a	Cursor

Summary

Chapter	13	Triggers

Lab	13.1:	What	Triggers	Are

Database	Trigger

BEFORE	Triggers

AFTER	Triggers

Autonomous	Transaction

Lab	13.2:	Types	of	Triggers

Row	and	Statement	Triggers

INSTEAD	OF	Triggers

Summary

Chapter	14	Mutating	Tables	and	Compound	Triggers

Lab	14.1:	Mutating	Tables

What	Is	a	Mutating	Table?

Resolving	Mutating	Table	Issues

Lab	14.2:	Compound	Triggers

What	Is	a	Compound	Trigger?

Resolving	Mutating	Table	Issues	with	Compound	Triggers

Summary

Chapter	15	Collections

Lab	15.1:	PL/SQL	Tables

Associative	Arrays

Nested	Tables

Collection	Methods

Lab	15.2:	Varrays

Lab	15.3:	Multilevel	Collections

Summary

Chapter	16	Records

Lab	16.1:	Record	Types

Table-Based	and	Cursor-Based	Records

User-Defined	Records

www.allitebooks.com

http://www.allitebooks.org

Record	Compatibility

Lab	16.2:	Nested	Records

Lab	16.3:	Collections	of	Records

Summary

Chapter	17	Native	Dynamic	SQL

Lab	17.1:	EXECUTE	IMMEDIATE	Statements

Using	the	EXECUTE	IMMEDIATE	Statement

How	to	Avoid	Common	ORA	Errors	When	Using	EXECUTE
IMMEDIATE

Lab	17.2:	OPEN-FOR,	FETCH,	and	CLOSE	Statements

Opening	Cursor

Fetching	from	a	Cursor

Closing	a	Cursor

Summary

Chapter	18	Bulk	SQL

Lab	18.1:	FORALL	Statements

Using	FORALL	Statements

SAVE	EXCEPTIONS	Option

INDICES	OF	Option

VALUES	OF	Option

Lab	18.2:	The	BULK	COLLECT	Clause

Lab	18.3:	Binding	Collections	in	SQL	Statements

Binding	Collections	with	EXECUTE	IMMEDIATE	Statements

Binding	Collections	with	OPEN-FOR,	FETCH,	and	CLOSE	Statements

Summary

Chapter	19	Procedures

Benefits	of	Modular	Code

Block	Structure

Anonymous	Blocks

Lab	19.1:	Creating	Procedures

Putting	Procedure	Creation	Syntax	into	Practice

Querying	the	Data	Dictionary	for	Information	on	Procedures

Lab	19.2:	Passing	Parameters	IN	and	OUT	of	Procedures

Using	IN	and	OUT	Parameters	with	Procedures

Summary

Chapter	20	Functions

Lab	20.1:	Creating	Functions

Creating	Stored	Functions

Making	Use	of	Functions

Lab	20.2:	Using	Functions	in	SQL	Statements

Invoking	Functions	in	SQL	Statements

Writing	Complex	Functions

Lab	20.3:	Optimizing	Function	Execution	in	SQL

Defining	a	Function	Using	the	WITH	Clause

Creating	a	Function	with	the	UDF	Pragma

Summary

Chapter	21	Packages

Lab	21.1:	Creating	Packages

Creating	Package	Specifications

Creating	Package	Bodies

Calling	Stored	Packages

Creating	Private	Objects

Lab	21.2:	Cursor	Variables

Lab	21.3:	Extending	the	Package

Extending	the	Package	with	Additional	Procedures

Lab	21.4:	Package	Instantiation	and	Initialization

Creating	Package	Variables	During	Initialization

Lab	21.5:	SERIALLY_REUSABLE	Packages

Using	the	SERIALLY_REUSABLE	Pragma

Summary

Chapter	22	Stored	Code

Lab	22.1:	Gathering	Information	about	Stored	Code

Getting	Stored	Code	Information	from	the	Data	Dictionary

Overloading	Modules

Summary

Chapter	23	Object	Types	in	Oracle

Lab	23.1:	Object	Types

Creating	Object	Types

Using	Object	Types	with	Collections

Lab	23.2:	Object	Type	Methods

Constructor	Methods

Member	Methods

Static	Methods

Comparing	Objects

Summary

Chapter	24	Oracle-Supplied	Packages

Lab	24.1:	Extending	Functionality	with	Oracle-Supplied	Packages

Accessing	Files	within	PL/SQL	with	UTL_FILE

Scheduling	Jobs	with	DBMS_JOB

Generating	an	Explain	Plan	with	DBMS_XPLAN

Generating	Implicit	Statement	Results	with	DBMS_SQL

Lab	24.2:	Error	Reporting	with	Oracle-Supplied	Packages

Using	the	DBMS_UTILITY	Package	for	Error	Reporting

Using	the	UTL_CALL_STACK	Package	for	Error	Reporting

Summary

Chapter	25	Optimizing	PL/SQL

Lab	25.1:	PL/SQL	Tuning	Tools

PL/SQL	Profiler	API

Trace	API

PL/SQL	Hierarchical	Profiler

Lab	25.2:	PL/SQL	Optimization	Levels

Lab	25.3:	Subprogram	Inlining

Summary

Appendix	A	PL/SQL	Formatting	Guide

Case

White	Space

Naming	Conventions

Comments

Other	Suggestions

Appendix	B	Student	Database	Schema

Table	and	Column	Descriptions

Index

Preface

Oracle®	PL/SQL	by	Example,	Fifth	Edition,	presents	the	Oracle	PL/SQL	programming
language	in	a	unique	and	highly	effective	format.	It	challenges	you	to	learn	Oracle
PL/SQL	by	using	it	rather	than	by	simply	reading	about	it.

Just	as	a	grammar	workbook	would	teach	you	about	nouns	and	verbs	by	first	showing
you	examples	and	then	asking	you	to	write	sentences,	Oracle®	PL/SQL	by	Example
teaches	you	about	cursors,	loops,	procedures,	triggers,	and	so	on	by	first	showing	you
examples	and	then	asking	you	to	create	these	objects	yourself.

Who	This	Book	Is	For
This	book	is	intended	for	anyone	who	needs	a	quick	but	detailed	introduction	to
programming	with	Oracle’s	PL/SQL	language.	The	ideal	readers	are	those	with	some
relational	database	experience,	with	some	Oracle	experience,	specifically	with	SQL,
SQL*Plus,	and	SQL	Developer,	but	with	little	or	no	experience	with	PL/SQL	or	with	most
other	programming	languages.

The	content	of	this	book	is	based	primarily	on	the	material	that	was	taught	in	an
Introduction	to	PL/SQL	class	at	Columbia	University’s	Computer	Technology	and
Applications	(CTA)	program	in	New	York	City.	The	student	body	was	rather	diverse,	in
that	there	were	some	students	who	had	years	of	experience	with	information	technology
(IT)	and	programming,	but	no	experience	with	Oracle	PL/SQL,	and	then	there	were	those
with	absolutely	no	experience	in	IT	or	programming.	The	content	of	the	book,	like	the
class,	is	balanced	to	meet	the	needs	of	both	extremes.	The	additional	exercises	available
through	the	companion	website	can	be	used	as	labs	and	homework	assignments	to
accompany	the	lectures	in	such	a	PL/SQL	course.

How	This	Book	Is	Organized
The	intent	of	this	workbook	is	to	teach	you	about	Oracle	PL/SQL	by	explaining	a
programming	concept	or	a	particular	PL/SQL	feature	and	then	illustrate	it	further	by
means	of	examples.	Oftentimes,	as	the	topic	is	discussed	more	in	depth,	these	examples
would	be	changed	to	illustrate	newly	covered	material.	In	addition,	most	of	the	chapters	of
this	book	have	Additional	Exercises	sections	available	through	the	companion	website.
These	exercises	allow	you	to	test	the	depth	of	your	understanding	of	the	new	material.

The	basic	structure	of	each	chapter	is	as	follows:

Objectives
Introduction
Lab
Lab	…
Summary

The	Objectives	section	lists	topics	covered	in	the	chapter.	Basically	a	single	objective
corresponds	to	a	single	Lab.

The	Introduction	offers	a	short	overview	of	the	concepts	and	features	covered	in	the
chapter.

Each	Lab	covers	a	single	objective	listed	in	the	Objectives	section	of	the	chapter.	In
some	instances	the	objective	is	divided	even	further	into	the	smaller	individual	topics	in
the	Lab.	Then	each	such	topic	is	explained	and	illustrated	with	the	help	of	examples	and
corresponding	outputs.	Note	that	as	much	as	possible,	each	example	is	provided	in	its
entirety	so	that	a	complete	code	sample	is	readily	available.

At	the	end	of	each	chapter	you	will	find	a	Summary	section,	which	provides	a	brief
conclusion	of	the	material	discussed	in	the	chapter.	In	addition,	the	By	the	Way	portion
will	state	whether	a	particular	chapter	has	an	Additional	Exercises	section	available	on	the
companion	website.

About	the	Companion	Website
The	companion	Website	is	located	at	informit.com/title/0133796787.	Here	you	will	find
three	very	important	things:

	Files	required	to	create	and	install	the	STUDENT	schema.

	Files	that	contain	example	scripts	used	in	the	book	chapters.

	Additional	Exercises	chapters,	which	have	two	parts:

•	A	Questions	and	Answers	part	where	you	are	asked	about	the	material	presented
in	a	particular	chapter	along	with	suggested	answers	to	these	questions.
Oftentimes,	you	are	asked	to	modify	a	script	based	on	some	requirements	and
explain	the	difference	in	the	output	caused	by	these	modifications.	Note	that	this
part	is	also	organized	into	Labs	similar	to	its	corresponding	chapter	in	the	book.

•	A	Try	it	Yourself	part	where	you	are	asked	to	create	scripts	based	on	the
requirements	provided.	This	part	is	different	from	the	Questions	and	Answers	part
in	that	there	are	no	scripts	supplied	with	the	questions.	Instead,	you	will	need	to
create	scripts	in	their	entirety.

By	the	Way

You	need	to	visit	the	companion	website,	download	the	student	schema,	and
install	it	in	your	database	prior	to	using	this	book	if	you	would	like	the	ability
to	execute	the	scripts	provided	in	the	chapters	and	on	the	site.

What	You	Will	Need
There	are	software	programs	as	well	as	knowledge	requirements	necessary	to	complete	the
Labs	in	this	book.	Note	that	some	features	covered	throughout	the	book	are	applicable	to
Oracle	12c	only.	However,	you	will	be	able	to	run	a	great	majority	of	the	examples	and
complete	Additional	Exercises	and	Try	it	Yourself	sections	by	using	the	following
products:

	Oracle	11g	or	higher

http://informit.com/title/0133796787

	SQL	Developer	or	SQL*Plus	11g	or	higher

	Access	to	the	Internet

You	can	use	either	Oracle	Personal	Edition	or	Oracle	Enterprise	Edition	to	execute	the
examples	in	this	book.	If	you	use	Oracle	Enterprise	Edition,	it	can	be	running	on	a	remote
server	or	locally	on	your	own	machine.	It	is	recommended	that	you	use	Oracle	11g	or
Oracle	12c	in	order	to	perform	all	or	a	majority	of	the	examples	in	this	book.	When	a
feature	will	only	work	in	the	latest	version	of	Oracle	database,	the	book	will	state	so
explicitly.	Additionally,	you	should	have	access	to	and	be	familiar	with	SQL	Developer	or
SQL*Plus.

You	have	a	number	of	options	for	how	to	edit	and	run	scripts	in	SQL	Developer	or	from
SQL*Plus.	There	are	also	many	third-party	programs	to	edit	and	debug	PL/SQL	code.
Both,	SQL	Developer	and	SQL*Plus	are	used	throughout	this	book,	since	these	are	two
Oracle-provided	tools	and	come	as	part	of	the	Oracle	installation.

By	the	Way

Chapter	1	has	a	Lab	titled	PL/SQL	Development	Environment	that	describes
how	to	get	started	with	SQL	Developer	and	SQL*Plus.	However,	a	great
majority	of	the	examples	used	in	the	book	were	executed	in	SQL	Developer.

About	the	Sample	Schema
The	STUDENT	schema	contains	tables	and	other	objects	meant	to	keep	information	about
a	registration	and	enrollment	system	for	a	fictitious	university.	There	are	ten	tables	in	the
system	that	store	data	about	students,	courses,	instructors,	and	so	on.	In	addition	to	storing
contact	information	(addresses	and	telephone	numbers)	for	students	and	instructors,	and
descriptive	information	about	courses	(costs	and	prerequisites),	the	schema	also	keeps
track	of	the	sections	for	particular	courses,	and	the	sections	in	which	students	have
enrolled.

The	SECTION	table	is	one	of	the	most	important	tables	in	the	schema	because	it	stores
data	about	the	individual	sections	that	have	been	created	for	each	course.	Each	section
record	also	stores	information	about	where	and	when	the	section	will	meet	and	which
instructor	will	teach	the	section.	The	SECTION	table	is	related	to	the	COURSE	and
INSTRUCTOR	tables.

The	ENROLLMENT	table	is	equally	important	because	it	keeps	track	of	which	students
have	enrolled	in	which	sections.	Each	enrollment	record	also	stores	information	about	the
student’s	grade	and	enrollment	date.	The	enrollment	table	is	related	to	the	STUDENT	and
SECTION	tables.

The	STUDENT	schema	also	has	a	number	of	other	tables	that	manage	grading	for	each
student	in	each	section.

The	detailed	structure	of	the	STUDENT	schema	is	described	in	Appendix	B,	Student
Database	Schema.

Acknowledgments

Ben	Rosenzweig:	I	would	like	to	thank	my	coauthor	Elena	Rakhimov	for	being	a
wonderful	and	knowledgeable	colleague	to	work	with.	I	would	also	like	to	thank	Douglas
Scherer	for	giving	me	the	opportunity	to	work	on	this	book	as	well	as	for	providing
constant	support	and	assistance	through	the	entire	writing	process.	I	am	indebted	to	the
team	at	Prentice	Hall,	which	includes	Greg	Doench,	Michelle	Housley,	and	especially
Songlin	Qiu	for	her	detailed	edits.	Finally,	I	would	like	to	thank	the	many	friends	and
family,	especially	Edward	Clarin	and	Edward	Knopping,	for	helping	me	through	the	long
process	of	putting	the	whole	book	together,	which	included	many	late	nights	and
weekends.

Elena	Rakhimov:	My	contribution	to	this	book	reflects	the	help	and	advice	of	many
people.	I	am	particularly	indebted	to	my	coauthor	Ben	Rosenzweig	for	making	this	project
a	rewarding	and	enjoyable	experience.	Many	thanks	to	Greg	Doench,	Michelle	Housley,
and	especially	Songlin	Qiu	for	her	meticulous	editing	skills,	and	many	others	at	Prentice
Hall	who	diligently	worked	to	bring	this	book	to	market.	Thanks	to	Michael	Rinomhota
for	his	invaluable	expertise	in	setting	up	the	Oracle	environment	and	Dan	Hotka	for	his
valuable	comments	and	suggestions.	Most	importantly,	to	my	family,	whose	excitement,
enthusiasm,	inspiration,	and	support	encouraged	me	to	work	hard	to	the	very	end,	and
were	exceeded	only	by	their	love.

About	the	Authors

Benjamin	Rosenzweig	is	a	Senior	Project	Manager	at	Misys	Financial	Software,	where
he	has	worked	since	2002.	Prior	to	that	he	was	a	principal	consultant	for	more	than	three
years	at	Oracle	Corporation	in	the	Custom	Development	Department.	His	computer
experience	ranges	from	creating	an	electronic	Tibetan–English	Dictionary	in	Kathmandu,
Nepal,	to	supporting	presentation	centers	at	Goldman	Sachs	and	managing	a	trading
system	at	TIAA-CREF.	Benjamin	has	been	an	instructor	at	the	Columbia	University
Computer	Technology	and	Application	program	in	New	York	City	since	1998.	In	2002	he
was	awarded	the	“Outstanding	Teaching	Award”	from	the	Chair	and	Director	of	the	CTA
program.	He	holds	a	B.A.	from	Reed	College	and	a	certificate	in	database	development
and	design	from	Columbia	University.	His	previous	books	with	Prentice	Hall	are	Oracle
Forms	Developer:	The	Complete	Video	Course	(2000),	and	Oracle	Web	Application
Programming	for	PL/SQL	Developers	(2003).

Elena	Rakhimov	has	over	20	years	of	experience	in	database	architecture	and
development	in	a	wide	spectrum	of	enterprise	and	business	environments	ranging	from
non-profit	organizations	to	Wall	Street	to	her	current	position	with	a	prominent	software
company	where	she	heads	up	the	database	team.	Her	determination	to	stay	“hands-on”
notwithstanding,	Elena	managed	to	excel	in	the	academic	arena	having	taught	relational
database	programming	at	Columbia	University’s	highly	esteemed	Computer	Technology
and	Applications	program.	She	was	educated	in	database	analysis	and	design	at	Columbia
University	and	in	applied	mathematics	at	Baku	State	University	in	Azerbaijan.	She
currently	resides	in	Vancouver,	Canada.

Introduction	to	PL/SQL	New	Features	in	Oracle
12c

Oracle	12c	has	introduced	a	number	of	new	features	and	improvements	for	PL/SQL.	This
introduction	briefly	describes	features	not	covered	in	this	book	and	points	you	to	specific
chapters	for	features	that	are	within	the	scope	of	this	book.	The	list	of	features	described
here	is	also	available	in	the	“Changes	in	This	Release	for	Oracle	Database	PL/SQL
Language	Reference”	section	of	the	PL/SQL	Language	Reference	manual	offered	as	part
of	Oracle’s	online	help.

The	new	PL/SQL	features	and	enhancements	are	as	follows:

	Invoker’s	rights	functions	can	be	result-cached

	More	PL/SQL-only	data	types	can	cross	the	PL/SQL-to-SQL	interface	clause

	ACCESSIBLE	BY	clause

	FETCH	FIRST	clause

	Roles	can	be	granted	to	PL/SQL	packages	and	stand-alone	subprograms

	More	data	types	have	the	same	maximum	size	in	SQL	and	PL/SQL

	Database	triggers	on	pluggable	databases

	LIBRARY	can	be	defined	as	DIRECTORY	object	and	with	CREDENTIAL	clause

	Implicit	statement	results

	BEQUEATH	CURRENT_USER	views

	INHERIT	PRIVILEGES	and	INHERIT	ANY	PRIVILEGES	privileges

	Invisible	columns

	Objects,	not	types,	are	editioned	or	noneditioned

	PL/SQL	functions	that	run	faster	in	SQL

	Predefined	inquiry	directives	$$PLSQL_UNIT_OWNER	and
$$PLSQL_UNIT_TYPE

	Compilation	parameter	PLSQL_DEBUG	is	deprecated

Invoker’s	Rights	Functions	Can	Be	Result-Cached
When	a	stored	subprogram	is	created	in	Oracle	products,	it	may	be	created	as	either	a
definer	rights	(DR)	unit	or	an	invoker	rights	(IR)	unit.	A	DR	unit	would	execute	with	the
permissions	of	its	owner,	whereas	an	IR	unit	would	execute	with	the	permissions	of	a	user
who	invoked	that	particular	unit.	By	default,	a	stored	subprogram	is	created	as	a	DR	unit
unless	explicitly	specified	otherwise.	Whether	a	particular	unit	is	considered	a	DR	or	IR
unit	is	controlled	by	the	AUTHID	property,	which	may	be	set	to	either	DEFINER	(default)
or	CURRENT_USER.

www.allitebooks.com

http://www.allitebooks.org

Prior	to	Oracle	12c,	functions	created	with	the	invoker	rights	clause	(AUTHID
CURRENT_USER)	could	not	be	result-cached.	To	create	a	function	as	an	IR	unit,	the
AUTHID	clause	must	be	added	to	the	function	specification.

A	result-cached	function	is	a	function	whose	parameter	values	and	result	are	stored	in
the	cache.	As	a	consequence,	when	such	a	function	is	invoked	with	the	same	parameter
values,	its	result	is	retrieved	from	the	cache	instead	of	being	computed	again.	To	enable	a
function	for	result-caching,	the	RESULT_CACHE	clause	must	be	added	to	the	function
specification.	This	is	demonstrated	by	the	following	example	(the	invoker	rights	clause
and	result-caching	are	highlighted	in	bold).

For	Example		Result-Caching	Functions	Created	with	Invoker’s	Rights
Click	here	to	view	code	image

CREATE	OR	REPLACE	FUNCTION	get_student_rec	(p_student_id	IN	NUMBER)

RETURN	STUDENT%ROWTYPE

AUTHID	CURRENT_USER

RESULT_CACHE	RELIES_ON	(student)

IS

		v_student_rec	STUDENT%ROWTYPE;

BEGIN

		SELECT	*

				INTO	v_student_rec

				FROM	student

			WHERE	student_id	=	p_student_id;

		RETURN	v_student_rec;

EXCEPTION

		WHEN	no_data_found

		THEN

				RETURN	NULL;

END	get_student_rec;

/

—	Execute	newly	created	function

DECLARE

		v_student_rec	STUDENT%ROWTYPE;

BEGIN

		v_student_rec	:=	get_student_rec	(p_student_id	=>	230);

END;

Note	that	if	the	student	record	for	student	ID	230	is	in	the	result	cache	already,	then	the
function	will	return	the	student	record	from	the	result	cache.	In	the	opposite	case,	the
student	record	will	be	selected	from	the	STUDENT	table	and	added	to	the	cache	for	future
use.	Because	the	result	cache	of	the	function	relies	on	the	STUDENT	table,	any	changes
applied	and	committed	on	the	STUDENT	table	will	invalidate	all	cached	results	for	the
get_student_rec	function.

More	PL/SQL-Only	Data	Types	Can	Cross	the	PL/SQL-to-
SQL	Interface	Clause
In	this	release,	Oracle	has	extended	support	of	PL/SQL-only	data	types	to	dynamic	SQL
and	client	programs	(OCI	or	JDBC).	For	example,	you	can	bind	collections	variables
when	using	the	EXECUTE	IMMEDIATE	statement	or	the	OPEN	FOR,	FETCH,	and
CLOSE	statements.	This	topic	is	covered	in	greater	detail	in	Lab	18.3,	Binding	Collections
in	SQL	Statements,	in	Chapter	18.

ACCESSIBLE	BY	Clause
An	optional	ACCESSIBLE	BY	clause	enables	you	to	specify	a	list	of	PL/SQL	units	that
may	access	the	PL/SQL	unit	being	created	or	modified.	The	ACCESSIBLE	BY	clause	is
typically	added	to	the	module	header—for	example,	to	the	function	or	procedure	header.
Each	unit	listed	in	the	ACCESSIBLE	BY	clause	is	called	an	accessor,	and	the	clause
itself	is	also	called	a	white	list.	This	is	demonstrated	in	the	following	example	(the
ACCESSIBLE	BY	clause	is	shown	in	bold).

For	Example		Procedure	Created	with	the	ACCESSIBLE	BY	Clause
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	test_proc1

ACCESSIBLE	BY	(TEST_PROC2)

AS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘TEST_PROC1’);

END	test_proc1;

/

CREATE	OR	REPLACE	PROCEDURE	test_proc2

AS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘TEST_PROC2’);

		test_proc1;

END	test_proc2;

/

—	Execute	TEST_PROC2

BEGIN

		test_proc2;

END;

/

TEST_PROC2

TEST_PROC1

—	Execute	TEST_PROC1	directly

BEGIN

		test_proc1;

END;

/

ORA-06550:	line	2,	column	4:

PLS-00904:	insufficient	privilege	to	access	object	TEST_PROC1

ORA-06550:	line	2,	column	4:

PL/SQL:	Statement	ignored

In	this	example,	there	are	two	procedures,	test_proc1	and	test_proc2,	and
test_proc1	is	created	with	the	ACCESSIBLE	BY	clause.	As	a	consequence,
test_proc1	may	be	accessed	by	test_proc2	only.	This	is	demonstrated	by	two
anonymous	PL/SQL	blocks.	The	first	block	executes	test_proc2	successfully.	The
second	block	attempts	to	execute	test_proc1	directly	and,	as	a	result,	causes	an	error.

Note	that	both	procedures	were	created	within	a	single	schema	(STUDENT),	and	that
both	PL/SQL	blocks	were	executed	in	the	single	session	by	the	schema	owner
(STUDENT).

FETCH	FIRST	Clause
The	FETCH	FIRST	clause	is	a	new	optional	feature	that	is	typically	used	with	the	“Top-
N”	queries	as	illustrated	by	the	following	example.	The	ENROLLMENT	table	used	in	this
example	contains	student	registration	data.	Each	student	is	identified	by	a	unique	student
ID	and	may	be	registered	for	multiple	courses.	The	FETCH	FIRST	clause	is	shown	in
bold.

For	Example		Using	FETCH	FIRST	Clause	with	“Top-N”	Query
Click	here	to	view	code	image

—	Sample	student	IDs	from	the	ENROLLMENT	table

SELECT	student_id

		FROM	enrollment;

STUDENT_ID

–––-

							102

							102

							103

							104

							105

							106

							106

							107

							108

							109

							109

							110

							110

							…

—	“Top-N”	query	returns	student	IDs	for	the	5	students	that	registered	for

the	most

—	courses

SELECT	student_id,	COUNT(*)	courses

		FROM	enrollment

GROUP	BY	student_id

ORDER	BY	courses	desc

FETCH	FIRST	5	ROWS	ONLY;

STUDENT_ID											COURSES

–––-											––-

							214																	4

							124																	4

							232																	3

							215																	3

							184																	3

Note	that	FETCH	FIRST	clause	may	also	be	used	in	conjunction	with	the	BULK
COLLECT	INTO	clause	as	demonstrated	here.	The	FETCH	FIRST	clause	is	shown	in
bold.

For	Example		Using	FETCH	FIRST	Clause	with	BULK	COLLECT	INTO	Clause
Click	here	to	view	code	image

DECLARE

		TYPE	student_name_tab	IS	TABLE	OF	VARCHAR2(100)	INDEX	BY	PLS_INTEGER;

		student_names	student_name_tab;

BEGIN

		—	Fetching	first	20	student	names	only

		SELECT	first_name||’	‘||last_name

				BULK	COLLECT	INTO	student_names

				FROM	student

			FETCH	FIRST	20	ROWS	ONLY;

		DBMS_OUTPUT.PUT_LINE	(‘There	are	‘||student_names.COUNT||’	students’);

END;

/

There	are	20	students

Roles	Can	Be	Granted	to	PL/SQL	Packages	and	Stand-
Alone	Subprograms
Starting	with	Oracle	12c,	you	are	able	to	grant	roles	to	PL/SQL	packages	and	stand-alone
subprograms.	Note	that	granting	a	role	to	a	PL/SQL	package	or	stand-alone	subprogram
does	not	alter	its	compilation.	Instead,	it	affects	how	privileges	required	by	the	SQL
statements	that	are	issued	by	the	PL/SQL	unit	at	run	time	are	checked.

Consider	the	following	example	where	the	READ	role	is	granted	to	the	function
get_student_name.

For	Example		Granting	READ	Role	to	the	get_student_name	Function
Click	here	to	view	code	image

GRANT	READ	TO	FUNCTION	get_student_name;

More	Data	Types	Have	the	Same	Maximum	Size	in	SQL	and
PL/SQL
Prior	to	Oracle	12c,	some	data	types	had	different	maximum	sizes	in	SQL	and	in	PL/SQL.
For	example,	in	SQL	the	maximum	size	of	NVARCHAR2	was	4000	bytes,	whereas	in
PL/SQL	it	was	32,767	bytes.	Starting	with	Oracle	12c,	the	maximum	sizes	of	the
VARCHAR2,	NVARCHAR2,	and	RAW	data	types	have	been	extended	to	32,767	for	both
SQL	and	PL/SQL.	To	see	these	maximum	sizes	in	SQL,	the	initialization	parameter
MAX_STRING_SIZE	must	be	set	to	EXTENDED.

Database	Triggers	on	Pluggable	Databases
The	pluggable	database	(PDB)	is	one	of	the	components	of	Oracle’s	multitenant
architecture.	Typically	it	is	a	portable	collection	of	schemas	and	other	database	objects.
Starting	with	Oracle	12c,	you	are	able	to	create	event	triggers	on	PDBs.	Detailed
information	on	triggers	is	provided	in	Chapters	13	and	14.	Note	that	PDBs	are	outside	the
scope	of	this	book,	but	detailed	information	on	them	may	be	found	in	Oracle’s	online
Administration	Guide.

LIBRARY	Can	Be	Defined	as	a	DIRECTORY	Object	and	with
a	CREDENTIAL	Clause
A	LIBRARY	is	a	schema	object	associated	with	a	shared	library	of	an	operating	system.	It
is	created	with	the	help	of	the	CREATE	OR	REPLACE	LIBRARY	statement.	A
DIRECTORY	is	also	an	object	that	maps	an	alias	to	an	actual	directory	on	the	server	file
system.	The	DIRECTORY	object	is	covered	very	briefly	in	Chapter	25	as	part	of	the	install
processes	for	the	PL/SQL	Profiler	API	and	PL/SQL	Hierarchical	Profiler.	In	the	Oracle
12c	release,	a	LIBRARY	object	may	be	defined	as	a	DIRECTORY	object	with	an	optional
CREDENTIAL	clause	as	shown	here.

For	Example		Creating	LIBRARY	as	DIRECTORY	Object
Click	here	to	view	code	image

CREATE	OR	REPLACE	LIBRARY	my_lib	AS	‘plsql_code’	IN	my_dir;

In	this	example,	the	LIBRARY	object	my_lib	is	created	as	a	DIRECTORY	object.	The
'plsql_code'	is	the	name	of	the	dynamic	link	library	(DDL)	in	the	DIRECTORY
object	my_dir.	Note	that	for	this	library	to	be	created	successfully,	the	DIRECTORY
object	my_dir	must	be	created	beforehand.	More	information	on	LIBRARY	and
DIRECTORY	objects	can	be	found	in	Oracle’s	online	Database	PL/SQL	Language
Reference.

Implicit	Statement	Results
Prior	to	Oracle	release	12c,	result	sets	of	SQL	queries	were	returned	explicitly	from	the
stored	PL/SQL	subprograms	via	REF	CURSOR	out	parameters.	As	a	result,	the	invoker
program	had	to	bind	to	the	REF	CURSOR	parameters	and	fetch	the	result	sets	explicitly	as
well.

Starting	with	this	release,	the	REF	CURSOR	out	parameters	can	be	replaced	by	two
procedures	of	the	DBMS_SQL	package,	RETURN_RESULT	and	GET_NEXT	RESULT.
These	procedures	enable	stored	PL/SQL	subprograms	to	return	result	sets	of	SQL	queries
implicitly,	as	illustrated	in	the	following	example	(the	reference	to	the	RETURN_RESULT
procedure	is	highlighted	in	bold):

For	Example		Using	DBMS_SQL.RETURN_RESULT	Procedure
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	test_return_result

AS

		v_cur		SYS_REFCURSOR;

BEGIN

		OPEN	v_cur

			FOR

				SELECT	first_name,	last_name

						FROM	instructor

					FETCH	FIRST	ROW	ONLY;

		DBMS_SQL.RETURN_RESULT	(v_cur);

END	test_return_result;

/

BEGIN

		test_return_result;

END;

/

In	this	example,	the	test_return_result	procedure	returns	the	instructor’s	first
and	last	names	to	the	client	application	implicitly.	Note	that	the	cursor	SELECT	statement
employs	a	FETCH	FIRST	ROW	ONLY	clause,	which	was	introduced	in	Oracle	12c	as
well.	To	get	the	result	set	from	the	procedure	test_return_result	successfully,	the
client	application	must	likewise	be	upgraded	to	Oracle	12c.	Otherwise,	the	following	error
message	is	returned:
Click	here	to	view	code	image

ORA-29481:	Implicit	results	cannot	be	returned	to	client.

ORA-06512:	at	“SYS.DBMS_SQL”,	line	2785

ORA-06512:	at	“SYS.DBMS_SQL”,	line	2779

ORA-06512:	at	“STUDENT.TEST_RETURN_RESULT”,	line	10

ORA-06512:	at	line	2

BEQUEATH	CURRENT_USER	Views
Prior	to	Oracle	12c,	a	view	could	be	created	only	as	a	definer	rights	unit.	Starting	with
release	12c,	a	view	may	be	created	as	an	invoker’s	rights	unit	as	well	(this	is	similar	to	the
AUTHID	property	of	a	stored	subprogram).	For	views,	however,	this	behavior	is	achieved
by	specifying	a	BEQUEATH	DEFINER	(default)	or	BEQUEATH	CURRENT_USER	clause
at	the	time	of	its	creation	as	illustrated	by	the	following	example	(the
BEQUEATH	CURRENT_USER	clause	is	shown	in	bold):

For	Example		Creating	View	with	BEQUEATH	CURRENT_USER	Clause
Click	here	to	view	code	image

CREATE	OR	REPLACE	VIEW	my_view

BEQUEATH	CURRENT_USER

AS

		SELECT	table_name,	status,	partitioned

				FROM	user_tables;

In	this	example,	my_view	is	created	as	an	IR	unit.	Note	that	adding	this	property	to	the
view	does	not	affect	its	primary	usage.	Rather,	similarly	to	the	AUTHID	property,	it
determines	which	set	of	permissions	will	be	applied	at	the	time	when	the	data	is	selected
from	this	view.

INHERIT	PRIVILEGES	and	INHERIT	ANY
PRIVILEGES	Privileges
Starting	with	Oracle	12c,	an	invoker’s	rights	unit	will	execute	with	the	invoker’s
permissions	only	if	the	owner	of	the	unit	has	INHERIT	PRIVILEGES	or	INHERIT
ANY	PRIVILEGES	privileges.	For	example,	before	Oracle	12c,	suppose	user1	created	a
function	F1	as	an	invoker’s	rights	unit	and	granted	execute	privilege	on	it	to	user2,	who
happened	to	have	more	privileges	than	user1.	Then	when	user2	ran	function	F1,	the
function	would	run	with	the	permissions	of	user2,	potentially	performing	operations	for
which	user1	might	not	have	had	permissions.	This	is	no	longer	the	case	with	Oracle	12c.
As	stated	previously,	such	behavior	must	be	explicitly	specified	via	INHERIT
PRIVILEGES	or	INHERIT	ANY	PRIVILEGES	privileges.

Invisible	Columns
Starting	with	Oracle	12c,	it	is	possible	to	define	and	manipulate	invisible	columns.	In
PL/SQL,	records	defined	as	%ROWTYPE	are	aware	of	such	columns,	as	illustrated	by	the
following	example	(references	to	the	invisible	columns	are	shown	in	bold):

For	Example		%ROWTYPE	Records	and	Invisible	Columns
Click	here	to	view	code	image

—	Make	NUMERIC_GRADE	column	invisible

ALTER	TABLE	grade	MODIFY	(numeric_grade	INVISIBLE);

/

table	GRADE	altered

DECLARE

		v_grade_rec	grade%ROWTYPE;

BEGIN

		SELECT	*

				INTO	v_grade_rec

				FROM	grade

			FETCH	FIRST	ROW	ONLY;

		DBMS_OUTPUT.PUT_LINE	(‘student	ID:	‘||v_grade_rec.student_id);

		DBMS_OUTPUT.PUT_LINE	(‘section	ID:	‘||v_grade_rec.section_id);

		—	Referencing	invisible	column	causes	an	error

		DBMS_OUTPUT.PUT_LINE	(‘grade:						’||v_grade_rec.numeric_grade);

END;

/

ORA-06550:	line	12,	column	54:

PLS-00302:	component	‘NUMERIC_GRADE’	must	be	declared

ORA-06550:	line	12,	column	4:

PL/SQL:	Statement	ignored

—	Make	NUMERIC_GRADE	column	visible

ALTER	TABLE	grade	MODIFY	(numeric_grade	VISIBLE);

/

table	GRADE	altered

DECLARE

		v_grade_rec	grade%ROWTYPE;

BEGIN

		SELECT	*

				INTO	v_grade_rec

				FROM	grade

			FETCH	FIRST	ROW	ONLY;

		DBMS_OUTPUT.PUT_LINE	(‘student	ID:	‘||v_grade_rec.student_id);

		DBMS_OUTPUT.PUT_LINE	(‘section	ID:	‘||v_grade_rec.section_id);

		—	This	time	the	script	executes	successfully

		DBMS_OUTPUT.PUT_LINE	(‘grade:						’||v_grade_rec.numeric_grade);

END;

/

student	ID:	123

section	ID:	87

grade:						99

As	you	can	gather	from	this	example,	the	first	run	of	the	anonymous	PL/SQL	block	did
not	complete	due	to	the	reference	to	the	invisible	column.	Once	the	NUMERIC_GRADE
column	has	been	set	to	visible	again,	the	script	is	able	to	complete	successfully.

Objects,	Not	Types,	Are	Editioned	or	Noneditioned
An	edition	is	a	component	of	the	edition-based	redefinition	feature	that	allows	you	to
make	a	copy	of	an	object—for	example,	a	PL/SQL	package—and	make	changes	to	it
without	affecting	or	invalidating	other	objects	that	may	be	dependent	on	it.	With
introduction	of	this	feature,	objects	created	in	the	database	may	be	defined	as	editioned	or
noneditioned.	For	an	object	to	be	editioned,	its	object	type	must	be	editionable	and	it	must
have	the	EDITIONABLE	property.	Similarly,	for	an	object	to	be	noneditioned,	its	object
type	must	be	noneditioned	or	it	must	have	the	NONEDITIONABLE	property.

Starting	with	Oracle	12c,	you	are	able	to	specify	whether	a	schema	object	is	editionable

or	noneditionable	in	the	CREATE	OR	REPLACE	and	ALTER	statements.	In	this	new
release,	a	user	(schema)	that	has	been	enabled	for	editions	is	able	to	own	a	noneditioned
object	even	if	its	type	is	editionable	in	the	database	but	noneditionable	in	the	schema	itself
or	if	this	object	has	NONEDITIONABLE	property.

PL/SQL	Functions	That	Run	Faster	in	SQL
Starting	with	Oracle	12c,	you	can	create	user-defined	functions	that	may	run	faster	when
they	are	invoked	in	the	SQL	statements.	This	may	be	accomplished	as	follows:

	User-defined	function	declared	in	the	WITH	clause	of	a	SELECT	statement

	User-defined	function	created	with	the	UDF	pragma

Consider	the	following	example,	where	the	format_name	function	is	created	in	the
WITH	clause	of	the	SELECT	statement.	This	newly	created	function	returns	the	formatted
student	name.

For	Example		Creating	a	User-Defined	Function	in	the	WITH	Clause
Click	here	to	view	code	image

WITH

		FUNCTION	format_name	(p_salutation	IN	VARCHAR2

																							,p_first_name	IN	VARCHAR2

																							,p_last_name		IN	VARCHAR2)

		RETURN	VARCHAR2

		IS

		BEGIN

				IF	p_salutation	IS	NULL

				THEN

						RETURN	p_first_name||’	‘||p_last_name;

				ELSE

						RETURN	p_salutation||’	‘||p_first_name||’	‘||p_last_name;

				END	IF;

		END;

SELECT	format_name	(salutation,	first_name,	last_name)	student_name

		FROM	student

	FETCH	FIRST	10	ROWS	ONLY;

STUDENT_NAME

–––––—

Mr.	George	Kocka

Ms.	Janet	Jung

Ms.	Kathleen	Mulroy

Mr.	Joel	Brendler

Mr.	Michael	Carcia

Mr.	Gerry	Tripp

Mr.	Rommel	Frost

Mr.	Roger	Snow

Ms.	Z.A.	Scrittorale

Mr.	Joseph	Yourish

Next,	consider	another	example	where	the	format_name	function	is	created	with	the
UDF	pragma.

For	Example		Creating	a	User-Defined	Function	in	the	UDF	Pragma

Click	here	to	view	code	image

CREATE	OR	REPLACE	FUNCTION	format_name	(p_salutation	IN	VARCHAR2

																																							,p_first_name	IN	VARCHAR2

																																							,p_last_name		IN	VARCHAR2)

RETURN	VARCHAR2

AS

		PRAGMA	UDF;

BEGIN

		IF	p_salutation	IS	NULL

		THEN

				RETURN	p_first_name||’	‘||p_last_name;

		ELSE

				RETURN	p_salutation||’	‘||p_first_name||’	‘||p_last_name;

		END	IF;

END;

/

SELECT	format_name	(salutation,	first_name,	last_name)	student_name

		FROM	student

	FETCH	FIRST	10	ROWS	ONLY;

STUDENT_NAME

–––––—

Mr.	George	Kocka

Ms.	Janet	Jung

Ms.	Kathleen	Mulroy

Mr.	Joel	Brendler

Mr.	Michael	Carcia

Mr.	Gerry	Tripp

Mr.	Rommel	Frost

Mr.	Roger	Snow

Ms.	Z.A.	Scrittorale

Mr.	Joseph	Yourish

Predefined	Inquiry	Directives	$$PLSQL_UNIT_OWNER	and
$$PLSQL_UNIT_TYPE

In	PL/SQL,	there	are	a	number	of	predefined	inquiry	directives,	as	described	in	the
following	table	($$PLSQL_UNIT_OWNER	and	$$PLSQL_UNIT_TYPE	are	highlighted
in	bold):

www.allitebooks.com

http://www.allitebooks.org

The	following	example	demonstrates	how	directives	may	be	used.

For	Example		Using	Predefined	Inquiry	Directives
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	test_directives

AS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Procedure	test_directives’);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_UNIT_OWNER:	‘||$$PLSQL_UNIT_OWNER);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_UNIT_TYPE:		’||$$PLSQL_UNIT_TYPE);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_UNIT:							’||$$PLSQL_UNIT);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_LINE:							’||$$PLSQL_LINE);

END;

/

BEGIN

		—	Execute	TEST_DERECTIVES	procedure

		test_directives;

		DBMS_OUTPUT.PUT_LINE	(‘Anonymous	PL/SQL	block’);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_UNIT_OWNER:	‘||$$PLSQL_UNIT_OWNER);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_UNIT_TYPE:		’||$$PLSQL_UNIT_TYPE);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_UNIT:							’||$$PLSQL_UNIT);

		DBMS_OUTPUT.PUT_LINE	(‘$$PLSQL_LINE:							’||$$PLSQL_LINE);

END;

/

Procedure	test_directives

$$PLSQL_UNIT_OWNER:	STUDENT

$$PLSQL_UNIT_TYPE:		PROCEDURE

$$PLSQL_UNIT:							TEST_DIRECTIVES

$$PLSQL_LINE:							8

Anonymous	PL/SQL	block

$$PLSQL_UNIT_OWNER:

$$PLSQL_UNIT_TYPE:		ANONYMOUS	BLOCK

$$PLSQL_UNIT:

$$PLSQL_LINE:							8

Compilation	Parameter	PLSQL_DEBUG	Is	Deprecated
Starting	with	Oracle	release	12c,	the	PLSQL_DEBUG	parameter	is	deprecated.	To	compile
PL/SQL	subroutines	for	debugging,	the	PLSQL_OPTIMIZE_LEVEL	parameter	should
be	set	to	1.	Chapter	25	covers	the	PLSQL_OPTIMIZE_LEVEL	parameter	and	various
optimization	levels	supported	by	the	PL/SQL	performance	optimizer	in	greater	detail.

1.	PL/SQL	Concepts

In	this	chapter,	you	will	learn	about

	PL/SQL	Architecture

	PL/SQL	Development	Environment

	PL/SQL:	The	Basics

PL/SQL	stands	for	“Procedural	Language	Extension	to	SQL.”	Because	of	its	tight
integration	with	SQL,	PL/SQL	supports	the	great	majority	of	the	SQL	features,	such	as
SQL	data	manipulation,	data	types,	operators,	functions,	and	transaction	control
statements.	As	an	extension	to	SQL,	PL/SQL	combines	SQL	with	programming	structures
and	subroutines	available	in	any	high-level	language.

PL/SQL	is	used	for	both	server-side	and	client-side	development.	For	example,	database
triggers	(code	that	is	attached	to	tables—discussed	in	Chapters	13	and	14)	on	the	server
side	and	the	logic	behind	an	Oracle	Form	on	the	client	side	can	be	written	using	PL/SQL.
In	addition,	PL/SQL	can	be	used	to	develop	web	and	mobile	applications	in	both
conventional	and	cloud	environments	when	used	in	conjunction	with	a	wide	variety	of
Oracle	development	tools.

Lab	1.1:	PL/SQL	Architecture

After	this	lab,	you	will	be	able	to

	Describe	PL/SQL	Architecture

	Discuss	PL/SQL	Block	Structure

	Understand	How	PL/SQL	Gets	Executed

Many	Oracle	applications	are	built	using	multiple	tiers,	also	known	as	N-tier	architecture,
where	each	tier	represents	a	separate	logical	process.	For	example,	a	three-tier	architecture
would	consist	of	three	tiers:	a	data	management	tier,	an	application	processing	tier,	and	a
presentation	tier.	In	this	architecture,	the	Oracle	database	resides	in	the	data	management
tier,	and	the	programs	that	make	requests	against	this	database	reside	in	either	the
presentation	tier	or	the	application	processing	tier.	Such	programs	can	be	written	in	many
programming	languages,	including	PL/SQL.	An	example	of	a	three-tier	architecture	is
shown	in	Figure	1.1.

Figure	1.1	Three-Tier	Architecture

PL/SQL	Architecture
While	PL/SQL	is	just	like	any	other	programming	language,	its	main	distinction	is	that	it
is	not	a	stand-alone	programming	language.	Rather,	PL/SQL	is	a	part	of	the	Oracle
RDBMS	as	well	as	various	Oracle	development	tools	such	as	Oracle	Application	Express
(APEX)	and	Oracle	Forms	and	Reports.	As	a	result,	PL/SQL	may	reside	in	any	layer	of
the	multitier	architecture.

No	matter	which	layer	PL/SQL	resides	in,	any	PL/SQL	block	or	subroutine	is	processed
by	the	PL/SQL	engine,	which	is	a	special	component	of	various	Oracle	products.	As	a
result,	it	is	very	easy	to	move	PL/SQL	modules	between	various	tiers.	The	PL/SQL	engine
processes	and	executes	any	PL/SQL	statements	and	sends	any	SQL	statements	to	the	SQL
statement	processor.	The	SQL	statement	processor	is	always	located	on	the	Oracle	server.
Figure	1.2	illustrates	the	PL/SQL	engine	residing	on	the	Oracle	server.

Figure	1.2	The	PL/SQL	Engine	and	Oracle	Server

When	the	PL/SQL	engine	is	located	on	the	server,	the	whole	PL/SQL	block	is	passed	to
the	PL/SQL	engine	on	the	Oracle	server.	The	PL/SQL	engine	processes	the	block
according	to	the	scheme	depicted	in	Figure	1.2.

When	the	PL/SQL	engine	is	located	on	the	client,	as	it	is	in	Oracle	development	tools,
the	PL/SQL	processing	is	done	on	the	client	side.	All	SQL	statements	that	are	embedded
within	the	PL/SQL	block	are	sent	to	the	Oracle	server	for	further	processing.	When
PL/SQL	block	contains	no	SQL	statements,	the	entire	block	is	executed	on	the	client	side.

Using	PL/SQL	has	several	advantages.	For	example,	when	you	issue	a	SELECT
statement	in	SQL*Plus	or	SQL	Developer	against	the	STUDENT	table,	it	retrieves	a	list	of
students.	The	SELECT	statement	you	issued	at	the	client	computer	is	sent	to	the	database
server	to	be	executed.	The	results	of	this	execution	are	then	returned	to	the	client.	In	turn,
rows	are	displayed	on	your	client	machine.

Now,	assume	that	you	need	to	issue	multiple	SELECT	statements.	Each	SELECT
statement	is	a	request	against	the	database	and	is	sent	to	the	Oracle	server.	The	results	of
each	SELECT	statement	are	sent	back	to	the	client.	Each	time	a	SELECT	statement	is
executed,	network	traffic	is	generated.	Hence,	multiple	SELECT	statements	will	result	in
multiple	round-trip	transmissions,	adding	significantly	to	the	network	traffic.

When	these	SELECT	statements	are	combined	into	a	PL/SQL	program,	they	are	sent	to
the	server	as	a	single	unit.	The	SELECT	statements	in	this	PL/SQL	program	are	executed
at	the	server.	The	server	sends	the	results	of	these	SELECT	statements	back	to	the	client,
also	as	a	single	unit.	Therefore,	a	PL/SQL	program	encompassing	multiple	SELECT
statements	can	be	executed	at	the	server	and	have	all	of	the	results	returned	to	the	client	in
the	same	round	trip.	This	is	obviously	a	more	efficient	process	than	having	each	SELECT
statement	execute	independently.	This	model	is	illustrated	in	Figure	1.3.

Figure	1.3	PL/SQL	in	Client–Server	Architecture

Figure	1.3	compares	two	applications.	The	first	application	uses	four	independent	SQL
statements	that	generate	eight	trips	on	the	network.	The	second	application	combines	SQL
statements	into	a	single	PL/SQL	block,	which	is	then	sent	to	the	PL/SQL	engine.	The
engine	sends	SQL	statements	to	the	SQL	statement	processor	and	checks	the	syntax	of	the
PL/SQL	statements.	As	you	can	see,	only	two	trips	are	generated	on	the	network	with	the
second	application.

In	addition,	applications	written	in	PL/SQL	are	portable.	They	can	run	in	any
environment	that	Oracle	products	can	run	in.	Because	PL/SQL	does	not	change	from	one
environment	to	the	next,	different	tools	can	use	a	PL/SQL	script.

PL/SQL	Block	Structure
A	block	is	the	most	basic	unit	in	PL/SQL.	All	PL/SQL	programs	are	combined	into
blocks.	These	blocks	can	also	be	nested	within	one	another.	Usually,	PL/SQL	blocks
combine	statements	that	represent	a	single	logical	task.	Therefore,	different	tasks	within	a
single	program	can	be	separated	into	blocks.	With	this	structure,	it	is	easier	to	understand
and	maintain	the	logic	of	the	program.

PL/SQL	blocks	can	be	divided	into	two	groups:	named	and	anonymous.	Named
PL/SQL	blocks	are	used	when	creating	subroutines.	These	subroutines,	which	include
procedures,	functions,	and	packages,	can	be	stored	in	the	database	and	referenced	by	their
names	later.	In	addition,	subroutines	such	as	procedures	and	functions	can	be	defined
within	the	anonymous	PL/SQL	block.	These	subroutines	exist	as	long	as	the	block	is
executing	and	cannot	be	referenced	outside	the	block.	In	other	words,	subroutines	defined
in	one	PL/SQL	block	cannot	be	called	by	another	PL/SQL	block	or	referenced	by	their
names	later.	Subroutines	are	discussed	in	Chapters	19	through	21.	Anonymous	PL/SQL
blocks,	as	you	have	probably	guessed,	do	not	have	names.	As	a	result,	they	cannot	be
stored	in	the	database	or	referenced	later.

PL/SQL	blocks	contain	three	sections:	a	declaration	section,	an	executable	section,	and
an	exception-handling	section.	The	executable	section	is	the	only	mandatory	section	of	the

block;	both	the	declaration	and	exception-handling	sections	are	optional.	As	a	result,	a
PL/SQL	block	has	the	structure	illustrated	in	Listing	1.1.

Listing	1.1	PL/SQL	Block	Structure
Click	here	to	view	code	image

DECLARE

		Declaration	statements

BEGIN

		Executable	statements

EXCEPTION

		Exception-handling	statements

END;

Declaration	Section

The	declaration	section	is	the	first	section	of	the	PL/SQL	block.	It	contains	definitions	of
PL/SQL	identifiers	such	as	variables,	constants,	cursors,	and	so	on.	PL/SQL	identifiers	are
covered	in	detail	throughout	this	book.

For	Example
Click	here	to	view	code	image

DECLARE

		v_first_name	VARCHAR2(35);

		v_last_name		VARCHAR2(35);

This	example	shows	the	declaration	section	of	an	anonymous	PL/SQL	block.	It	begins
with	the	keyword	DECLARE	and	contains	two	variable	declarations.	The	names	of	the
variables,	v_first_name	and	v_last_name,	are	followed	by	their	data	types	and
sizes.	Notice	that	a	semicolon	terminates	each	declaration.

Executable	Section

The	executable	section	is	the	next	section	of	the	PL/SQL	block.	It	contains	executable
statements	that	allow	you	to	manipulate	the	variables	that	have	been	declared	in	the
declaration	section.

For	Example
Click	here	to	view	code	image

BEGIN

		SELECT	first_name,	last_name

				INTO	v_first_name,	v_last_name

				FROM	student

			WHERE	student_id	=	123;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name:	‘||v_first_name||’	‘||v_last_name);

END;

This	example	shows	the	executable	section	of	the	PL/SQL	block.	It	begins	with	the
keyword	BEGIN	and	contains	a	SELECT	INTO	statement	from	the	STUDENT	table.	The
first	and	last	names	for	student	ID	123	are	selected	into	two	variables:	v_first_name
and	v_last_name.	Chapter	3	contains	a	detailed	explanation	of	the	SELECT	INTO
statement.	Next,	the	values	of	the	variables,	v_first_name	and	v_last_name,	are

displayed	on	the	screen	with	the	help	of	the	DBMS_OUTPUT.PUT_LINE	statement.	This
statement	will	be	covered	later	in	this	chapter	in	greater	detail.	The	end	of	the	executable
section	of	this	block	is	marked	by	the	keyword	END.

By	the	Way

The	executable	section	of	any	PL/SQL	block	always	begins	with	the	keyword
BEGIN	and	ends	with	the	keyword	END.

Exception-Handling	Section

Two	types	of	errors	may	occur	when	a	PL/SQL	block	is	executed:	compilation	or	syntax
errors	and	runtime	errors.	Compilation	errors	are	detected	by	the	PL/SQL	compiler	when
there	is	a	misspelled	reserved	word	or	a	missing	semicolon	are	the	end	of	the	statement.

For	Example
Click	here	to	view	code	image

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘This	is	a	test’)

END;

This	example	contains	a	syntax	error:	The	DBMS_OUTPUT.PUT_LINE	statement	is	not
terminated	by	a	semicolon.

Runtime	errors	occur	while	the	program	is	running	and	cannot	be	detected	by	the
PL/SQL	compiler.	These	types	of	errors	are	detected	or	handled	by	the	exception-handling
section	of	the	PL/SQL	block.	It	contains	a	series	of	statements	that	are	executed	when	a
runtime	error	occurs	within	the	block.

Once	a	runtime	error	occurs,	control	is	passed	to	the	exception-handling	section	of	the
block.	The	error	is	then	evaluated,	and	a	specific	exception	is	raised	or	executed.	This	is
best	illustrated	by	the	following	example.	All	changes	are	shown	in	bold.

For	Example
Click	here	to	view	code	image

BEGIN

		SELECT	first_name,	last_name

				INTO	v_first_name,	v_last_name

				FROM	student

			WHERE	student_id	=	123;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name:	‘||v_first_name||’	‘||v_last_name);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	student	with	student	id	123’);

END;

This	example	shows	the	exception-handling	section	of	the	PL/SQL	block.	It	begins	with
the	keyword	EXCEPTION.	The	WHEN	clause	evaluates	which	exception	must	be	raised.	In
this	example,	there	is	only	one	exception,	called	NO_DATA_FOUND,	and	it	is	raised	when
the	SELECT	statement	does	not	return	any	rows.	If	there	is	no	record	for	student	ID	123	in

the	STUDENT	table,	control	is	passed	to	the	exception-handling	section	and	the
DBMS_OUTPUT.PUT_LINE	statement	is	executed.	Chapters	8,	9,	and	10	contain
detailed	explanations	of	the	exception-handling	section.

You	have	seen	examples	of	the	declaration	section,	executable	section,	and	exception-
handling	section.	These	examples	may	be	combined	into	a	single	PL/SQL	block.

For	Example		ch01_1a.sql
Click	here	to	view	code	image

DECLARE

		v_first_name	VARCHAR2(35);

		v_last_name		VARCHAR2(35);

BEGIN

		SELECT	first_name,	last_name

				INTO	v_first_name,	v_last_name

				FROM	student

			WHERE	student_id	=	123;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name:	‘||v_first_name||’	‘||v_last_name);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	student	with	student	id	123’);

END;

How	PL/SQL	Gets	Executed
Every	time	an	anonymous	PL/SQL	block	is	executed,	the	code	is	sent	to	the	PL/SQL
engine,	where	it	is	compiled.	A	named	PL/SQL	block	is	compiled	only	at	the	time	of	its
creation,	or	if	it	has	been	changed.	The	compilation	process	includes	syntax	and	semantic
checking,	as	well	as	code	generation.

Syntax	checking	involves	checking	PL/SQL	code	for	syntax	or	compilation	errors.	As
stated	previously,	a	syntax	error	occurs	when	a	statement	does	not	exactly	correspond	to
the	syntax	of	the	programming	language.	A	misspelled	keyword,	a	missing	semicolon	at
the	end	of	the	statement,	and	an	undeclared	variable	are	all	examples	of	syntax	errors.
Once	syntax	errors	are	corrected,	the	compiler	can	generate	a	parse	tree.

By	the	Way

A	parse	tree	is	a	tree-like	structure	that	represents	the	language	rules	of	a
computer	language.

Semantic	checking	involves	further	processing	on	the	parse	tree.	It	determines	whether
database	objects	such	as	table	names	and	column	names	referenced	in	the	SELECT
statements	are	valid	and	whether	you	have	privileges	to	access	them.	At	the	same	time,	the
compiler	can	assign	a	storage	address	to	program	variables	that	are	used	to	hold	data.	This
process,	which	is	called	binding,	allows	Oracle	software	to	reference	storage	addresses
when	the	program	is	run.

Code	generation	creates	code	for	the	PL/SQL	block	in	interpreted	or	native	mode.	Code
created	in	interpreted	mode	is	called	p-code.	P-code	is	a	list	of	instructions	to	the	PL/SQL

engine	that	are	interpreted	at	run	time.	Code	created	in	a	native	mode	is	a	processor-
dependent	system	code	that	is	called	native	code.	Because	native	code	does	not	need	to	be
interpreted	at	run	time,	it	usually	runs	slightly	faster.
The	mode	in	which	the	PL/SQL	engine	generates	code	is	determined	by	the

PLSQL_CODE_TYPE	database	initialization	parameter.	By	default,	its	value	is	set	to
INTERPRETED.	This	parameter	is	typically	set	by	the	database	administrators.

For	named	blocks,	both	p-code	and	native	code	are	stored	in	the	database,	and	are	used
the	next	time	the	program	is	executed.	Once	the	process	of	compilation	has	completed
successfully,	the	status	of	a	named	PL/SQL	block	is	set	to	VALID,	and	it	is	also	stored	in
the	database.	If	the	compilation	process	was	not	successful,	the	status	of	the	named
PL/SQL	block	is	set	to	INVALID.

Watch	Out!

Successful	compilation	of	the	named	PL/SQL	block	on	one	occasion	does	not
guarantee	successful	execution	of	this	block	in	the	future.	If,	at	the	time	of
execution,	any	one	of	the	stored	objects	referenced	by	the	block	is	not	present
in	the	database	or	not	accessible	to	the	block,	execution	will	fail.	At	such
time,	the	status	of	the	named	PL/SQL	block	will	be	changed	to	INVALID.

Lab	1.2:	PL/SQL	Development	Environment

After	this	lab,	you	will	be	able	to

	Get	Started	with	SQL	Developer

	Get	Started	with	SQL*Plus

	Execute	PL/SQL	Scripts

SQL	Developer	and	SQL*Plus	are	two	Oracle-provided	tools	that	you	can	use	to	develop
and	run	PL/SQL	scripts.	SQL*Plus	is	an	old-style	command-line	utility	tool	that	has	been
part	of	the	Oracle	platform	since	its	infancy.	It	is	included	in	the	Oracle	installation	on
every	platform.	SQL	Developer	is	a	free	graphical	tool	used	for	database	development	and
administration.	It	is	a	fairly	recent	addition	to	the	Oracle	tool	set	and	is	available	either	as
a	part	of	the	Oracle	installation	or	via	download	from	Oracle’s	website.

Due	to	its	graphical	interface,	SQL	Developer	is	a	much	easier	environment	to	use	than
SQL*Plus.	It	allows	you	to	browse	database	objects,	run	SQL	statements,	and	create,
debug,	and	run	PL/SQL	statements.	In	addition,	it	supports	syntax	highlighting	and
formatting	templates	that	become	very	useful	when	you	are	developing	and	debugging
complex	PL/SQL	modules.

Even	though	SQL*Plus	and	SQL	Developer	are	two	very	different	tools,	their
underlying	functionality	and	their	interactions	with	the	database	are	very	similar.	At	run
time,	the	SQL	and	PL/SQL	statements	are	sent	to	the	database.	Once	they	are	processed,
the	results	are	sent	back	from	the	database	and	displayed	on	the	screen.

The	examples	used	in	this	chapter	are	executed	in	both	tools	to	illustrate	some	of	the
interface	differences	when	appropriate.	Note	that	the	primary	focus	of	this	book	is	learning
PL/SQL;	thus	these	tools	are	covered	only	to	the	degree	that	is	required	to	run	PL/SQL
examples	provided	by	this	book.

Getting	Started	with	SQL	Developer
If	SQL	Developer	has	been	installed	as	part	of	the	Oracle	installation,	you	can	launch	it	by
accessing	Start,	All	Programs,	Oracle,	Application	Development,	SQL	Developer	on
Windows	7	and	earlier	versions.	On	Windows	8,	SQL	Developer	is	invoked	by	accessing
Start,	All	Apps,	Oracle,	SQL	Developer.	Alternatively,	you	can	download	and	install	this
tool	as	a	separate	module.

Once	SQL	Developer	is	installed,	you	need	to	create	connection	to	the	database	server.
This	can	be	accomplished	by	clicking	on	the	Plus	icon	located	in	the	upper-left	corner	of
the	Connections	tab.	This	activates	the	New/Select	Database	Connection	dialog	box,	as
shown	in	Figure	1.4.

Figure	1.4	Creating	a	Database	Connection	in	SQL	Developer

In	Figure	1.4,	you	need	to	provide	a	connection	name	(StudentConnection),	user	name
(student),	and	password	(learn).

By	the	Way

Starting	with	Oracle	11g,	the	password	is	case	sensitive.

In	the	same	dialog	box,	you	need	to	provide	database	connection	information	such	as
the	hostname	(typically	the	IP	address	of	the	machine	or	the	machine	name	where	the
database	server	resides),	the	default	port	where	that	database	listens	for	the	connection
requests	(usually	1521),	and	the	SID	(system	ID)	or	service	name	that	identifies	a
particular	database.	Both	the	SID	and	service	name	would	depend	on	the	names	you
picked	up	for	your	installation	of	Oracle.	The	default	SID	is	usually	set	to	orcl.

www.allitebooks.com

http://www.allitebooks.org

Watch	Out!

If	you	have	not	created	the	STUDENT	schema	yet,	you	will	not	be	able	to
create	this	connection	successfully.	To	create	the	STUDENT	schema,	refer	to
the	installation	instructions	provided	on	the	companion	website.

Once	the	connection	has	been	successfully	created,	you	can	connect	to	the	database	by
double-clicking	on	the	StudentConnection.	By	expanding	the	StudentConnection	(clicking
on	the	plus	sign	located	to	the	left	of	it),	you	are	able	to	browse	various	database	objects
available	in	the	STUDENT	schema.	For	example,	Figure	1.5	shows	list	of	tables	available
in	the	STUDENT	schema.

Figure	1.5	List	of	Tables	in	the	STUDENT	Schema

At	this	point	you	can	start	typing	SQL	or	PL/SQL	commands	in	the	Worksheet	window,
shown	in	Figure	1.5.

To	disconnect	from	the	STUDENT	schema,	you	need	to	right-click	on	the
StudentConnection	and	click	on	the	Disconnect	option.	This	is	illustrated	in	Figure	1.6.

Figure	1.6	Disconnecting	from	a	Database	in	SQL	Developer

Getting	Started	with	SQL*Plus
On	Windows	7	and	earlier	versions,	you	can	access	SQL*Plus	by	choosing	Start,	All
Programs,	Oracle,	Application	Development,	SQL*Plus	under	the	Start	button.	On
Windows	8,	SQL*Plus	is	invoked	by	accessing	Start,	All	Apps,	Oracle,	SQL*Plus.

When	you	open	SQL*Plus,	you	are	prompted	to	enter	your	user	name	and	password
(“student”	and	“learn,”	respectively).	In	addition,	you	can	invoke	SQL*Plus	by	typing
sqlplus	in	the	command	prompt	window.

By	the	Way

In	SQL*Plus,	the	password	is	not	displayed	on	the	screen,	even	as	a	masked
text.

After	successful	login,	you	are	able	to	enter	your	commands	at	the	SQL>	prompt.	This
is	illustrated	in	Figure	1.7.

Figure	1.7	Connecting	to	the	Database	in	SQL*Plus

To	terminate	your	connection	to	the	database,	type	either	EXIT	or	QUIT	command	and
press	Enter.

Did	You	Know?

Terminating	the	database	connection	in	either	SQL	Developer	or	SQL*Plus
terminates	only	your	own	client	connection.	In	a	multiuser	environment,	there
may	be	potentially	hundreds	of	client	connections	to	the	database	server	at
any	time.	As	these	connections	terminate	and	new	ones	are	initiated,	the
database	server	continues	to	run	and	send	various	query	results	back	to	its
clients.

Executing	PL/SQL	Scripts
As	mentioned	earlier,	at	run	time	SQL	and	PL/SQL	statements	are	sent	from	the	client
machine	to	the	database.	Once	they	are	processed,	the	results	are	sent	back	from	the
database	to	the	client	and	are	displayed	on	the	screen.	However,	there	are	some	differences
between	entering	SQL	and	PL/SQL	statements.

Consider	the	following	example	of	a	SQL	statement.

For	Example
SELECT	first_name,	last_name

		FROM	student

	WHERE	student_id	=	102;

If	this	statement	is	executed	in	SQL	Developer,	the	semicolon	is	optional.	To	execute
this	statement,	you	need	to	click	on	the	triangle	button	in	the	StudentConnection	SQL
Worksheet	or	press	the	F9	key	on	your	keyboard.	The	results	of	this	query	are	then
displayed	in	the	Query	Result	window,	as	shown	in	Figure	1.8.

Figure	1.8	Executing	a	Query	in	SQL	Developer

When	the	same	SELECT	statement	is	executed	in	SQL*Plus,	the	semicolon	is	required.
It	signals	SQL*Plus	that	the	statement	is	terminated.	As	soon	as	you	press	the	Enter	key,
the	query	is	sent	to	the	database	and	the	results	are	displayed	on	the	screen,	as	shown	in
Figure	1.9.

Figure	1.9	Executing	a	Query	in	SQL*Plus

Now,	consider	the	example	of	the	PL/SQL	block	used	in	the	previous	lab.

For	Example		ch01_1a.sql

Click	here	to	view	code	image

DECLARE

		v_first_name	VARCHAR2(35);

		v_last_name		VARCHAR2(35);

BEGIN

		SELECT	first_name,	last_name

				INTO	v_first_name,	v_last_name

				FROM	student

			WHERE	student_id	=	123;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name:	‘||v_first_name||’	‘||v_last_name);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	student	with	student	id	123’);

END;

Note	that	each	individual	statement	is	this	script	is	terminated	by	a	semicolon.	Each
variable	declaration,	the	SELECT	INTO	statement,	both	DBMS_OUTPUT.PUT_LINE
statements,	and	the	END	keyword	are	all	terminated	by	the	semicolon.	This	syntax	is
necessary	because	in	PL/SQL	the	semicolon	marks	termination	of	an	individual	statement
within	a	block.	In	other	words,	the	semicolon	is	not	a	block	terminator.

Because	SQL	Developer	is	a	graphical	tool,	it	does	not	require	a	special	block
terminator.	The	preceding	example	can	be	executed	in	SQL	Developer	by	clicking	on	the
green	triangle	button	in	the	StudentConnection	SQL	Worksheet	or	pressing	the	F9	key	on
your	keyboard,	as	shown	in	Figure	1.10.

Figure	1.10	Executing	a	PL/SQL	Block	in	SQL	Developer

The	block	terminator	becomes	necessary	when	the	same	example	is	executed	in

SQL*Plus.	Because	it	is	a	command-line	tool,	SQL*Plus	requires	a	textual	way	of
knowing	when	the	block	has	terminated	and	is	ready	for	execution.	The	“/”	is	interpreted
by	SQL*Plus	as	a	block	terminator.	Once	you	press	the	Enter	key,	the	PL/SQL	block	is
sent	to	the	database	and	the	results	are	displayed	on	the	screen.	This	is	shown	in	Figure
1.11a.

Figure	1.11a	Executing	a	PL/SQL	Block	in	SQL*Plus	with	a	Block	Terminator

If	you	omit	“/”,	SQL*Plus	will	not	execute	the	PL/SQL	script.	Instead,	it	will	simply
add	a	blank	line	to	the	script	when	you	press	the	Enter	key.	This	is	shown	in	Figure	1.11b.

Figure	1.11b	Executing	a	PL/SQL	Block	in	SQL*Plus	without	a	Block	Terminator

Lab	1.3:	PL/SQL:	The	Basics

After	this	lab,	you	will	be	able	to

	Use	the	DBMS_OUTPUT.PUT_LINE	Statement

	Use	the	Substitution	Variable	Feature

We	noted	earlier	that	PL/SQL	is	not	a	stand-alone	programming	language;	rather,	it	exists
only	as	a	tool	within	the	Oracle	environment.	As	a	result,	it	does	not	really	have	any
capabilities	to	accept	input	from	a	user.	This	is	accomplished	with	the	special	feature	of
the	SQL	Developer	and	SQL*Plus	tools	called	a	substitution	variable.

Similarly,	it	is	often	helpful	to	provide	the	user	with	some	pertinent	information	after
the	execution	of	a	PL/SQL	block,	and	this	is	accomplished	with	the	help	of	the
DBMS_OUTPUT.PUT_LINE	statement.	Note	that	unlike	the	substitution	variable,	this
statement	is	part	of	the	PL/SQL	language.

DBMS_OUTPUT.PUT_LINE	Statement
You	already	have	seen	some	examples	of	how	the	DBMS_OUTPUT.PUT_LINE	statement
can	be	used—that	is,	to	display	information	on	the	screen.	The
DBMS_OUTPUT.PUT_LINE	is	a	call	to	the	procedure	PUT_LINE.	This	procedure	is	a
part	of	the	DBMS_OUTPUT	package	that	is	owned	by	the	Oracle	user	SYS.

The	DBMS_OUTPUT.PUT_LINE	statement	writes	information	to	the	buffer	for
storage.	Once	a	program	has	completed,	the	information	from	the	buffer	is	displayed	on
the	screen.	The	size	of	the	buffer	can	be	set	between	2000	and	1	million	bytes.

To	see	the	results	of	the	DBMS_OUTPUT.PUT_LINE	statement	on	the	screen,	you
need	to	enable	it.	In	SQL	Developer,	this	is	accomplished	by	selecting	the	View	menu
option	and	then	choosing	the	Dbms	Output	option,	as	shown	in	Figure	1.12a.

Figure	1.12a	Enabling	DBMS_OUTPUT	in	SQL	Developer:	Step	1

Once	the	Dbms	Output	window	appears	in	SQL	Developer,	you	need	to	click	on	the
green	plus	button,	as	shown	in	Figure	1.12b.

Figure	1.12b	Enabling	DBMS_OUTPUT	in	SQL	Developer:	Step	2

Once	you	click	on	the	plus	button,	you	will	be	prompted	with	the	name	of	the
connection	for	which	you	want	to	enable	the	statement.	You	need	to	select
StudentConnection	and	click	OK.	The	result	of	this	operation	is	shown	in	Figure	1.12c.

Figure	1.12c	Enabling	DBMS_OUTPUT	in	SQL	Developer:	Step	3

To	enable	the	DBMS_OUTPUT	statement	in	SQL*Plus,	you	enter	one	of	the	following
statements	before	the	PL/SQL	block:

SET	SERVEROUTPUT	ON;

or
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON	SIZE	5000;

The	first	SET	statement	enables	the	DBMS_OUTPUT.PUT_LINE	statement,	with	the
default	value	for	the	buffer	size	being	used.	The	second	SET	statement	not	only	enables
the	DBMS_OUTPUT.PUT_LINE	statement,	but	also	changes	the	buffer	size	from	its
default	value	to	5000	bytes.

Similarly,	if	you	do	not	want	information	to	be	displayed	on	the	screen	by	the
DBMS_OUTPUT.PUT_LINE	statement,	you	can	issue	the	following	SET	command	prior
to	the	PL/SQL	block:

SET	SERVEROUTPUT	OFF;

Substitution	Variable	Feature
Substitution	variables	are	a	special	type	of	variables	that	enable	PL/SQL	to	accept	input
from	a	user	at	a	run	time.	They	cannot	be	used	to	output	values,	however,	because	no
memory	is	allocated	for	them.	Substitution	variables	are	replaced	with	the	values	provided
by	the	user	before	the	PL/SQL	block	is	sent	to	the	database.	The	variable	names	are
usually	prefixed	by	the	ampersand	(&)	or	double	ampersand	(&&)	character.

www.allitebooks.com

http://www.allitebooks.org

Consider	the	following	example.

For	Example		ch01_1b.sql
Click	here	to	view	code	image

DECLARE

		v_student_id	NUMBER	:=	&sv_student_id;

		v_first_name	VARCHAR2(35);

		v_last_name		VARCHAR2(35);

BEGIN

		SELECT	first_name,	last_name

				INTO	v_first_name,	v_last_name

				FROM	student

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name:	‘||v_first_name||’	‘||v_last_name);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	such	student’);

END;

When	this	example	is	executed,	the	user	is	asked	to	provide	a	value	for	the	student	ID.
The	student’s	name	is	then	retrieved	from	the	STUDENT	table	if	there	is	a	record	with	the
given	student	ID.	If	there	is	no	record	with	the	given	student	ID,	the	message	from	the
exception-handling	section	is	displayed	on	the	screen.

In	SQL	Developer,	the	substitution	variable	feature	operates	as	shown	in	Figure	1.13.

Figure	1.13	Using	Substitution	Variable	in	SQL	Developer

Once	the	value	for	the	substitution	variable	is	provided,	the	results	of	the	execution	are
displayed	in	the	Script	Output	window,	as	shown	in	Figure	1.14.

Figure	1.14	Using	Substitution	Variable	in	SQL	Developer:	Script	Output	Window

In	Figure	1.14,	the	substitution	of	the	variable	is	shown	in	the	Script	Output	window
and	the	result	of	the	execution	is	shown	in	the	Dbms	Output	window.

In	SQL*Plus,	the	substitution	variable	feature	operates	as	shown	in	Figure	1.15.

Figure	1.15	Using	Substitution	Variable	in	SQL*Plus

Note	that	SQL*Plus	does	not	list	the	complete	PL/SQL	block	in	its	results,	but	rather
displays	the	substitution	operation	only.

The	preceding	example	uses	a	single	ampersand	for	the	substitution	variable.	When	a
single	ampersand	is	used	throughout	the	PL/SQL	block,	the	user	is	asked	to	provide	a
value	for	each	occurrence	of	the	substitution	variable.

For	Example		ch01_2a.sql
Click	here	to	view	code	image

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Today	is	‘||’&sv_day’);

		DBMS_OUTPUT.PUT_LINE	(‘Tomorrow	will	be	‘||’&sv_day’);

END;

When	executing	this	example	in	either	SQL	Developer	or	SQL*Plus,	you	are	prompted
twice	to	provide	the	value	for	the	substitution	variable.	This	example	produces	the
following	output:

Today	is	Monday

Tomorrow	will	be	Tuesday

Did	You	Know?

When	a	substitution	variable	is	used	in	the	script,	the	output	produced	by	the
program	contains	the	statements	that	show	how	the	substitution	was	done.

If	you	do	not	want	to	see	these	lines	displayed	in	the	output	produced	by
the	script,	use	the	SET	command	option	before	you	run	the	script:

SET	VERIFY	OFF;

This	command	is	supported	by	both	SQL	Developer	and	SQL*Plus.

As	demonstrated	earlier,	when	the	same	substitution	variable	is	used	with	a	single
ampersand,	the	user	is	prompted	to	provide	a	value	for	each	occurrence	of	this	variable	in
the	script.	To	avoid	this	task,	you	can	prefix	the	first	occurrence	of	the	substitution
variable	by	the	double	ampersand	(&&)	character,	as	highlighted	in	bold	in	the	following
example.

For	Example		ch01_2b.sql
Click	here	to	view	code	image

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Today	is	‘||’&&sv_day‘);

		DBMS_OUTPUT.PUT_LINE	(‘Tomorrow	will	be	‘||’&sv_day’);

END;

In	this	example,	the	substitution	variable	sv_day	is	prefixed	by	a	double	ampersand	in
the	first	DBMS_OUTPUT.PUT_LINE	statement.	As	a	result,	this	version	of	the	example
produces	different	output:

Today	is	Monday

Tomorrow	will	be	Monday

From	the	output	shown,	it	is	clear	that	the	user	is	asked	only	once	to	provide	the	value
for	the	substitution	variable	sv_day.	In	turn,	both	DBMS_OUTPUT.PUT_LINE
statements	use	the	value	of	Monday	entered	by	the	user.

When	a	substitution	variable	is	assigned	to	the	string	(text)	data	type,	it	is	a	good
practice	to	enclose	it	with	single	quotes.	You	cannot	always	guarantee	that	a	user	will
provide	text	information	in	single	quotes.	This	practice,	which	will	make	your	program
less	error	prone,	is	illustrated	in	the	following	code	fragment.

For	Example
Click	here	to	view	code	image

DECLARE

		v_course_no	VARCHAR2(5)	:=	‘&sv_course_no’;

As	mentioned	earlier,	substitution	variables	are	usually	prefixed	by	the	ampersand	(&)
or	double	ampersand	(&&)	characters;	these	are	the	default	characters	that	denote
substitution	variables.	A	special	SET	command	option	available	in	SQL	Developer	and
SQL*Plus	also	allows	you	to	change	the	default	character	to	any	other	character	or	disable
the	substitution	variable	feature.	This	SET	command	has	the	following	syntax:

SET	DEFINE	character

or
SET	DEFINE	ON

or
SET	DEFINE	OFF

The	first	SET	command	option	changes	the	prefix	of	the	substitution	variable	from	an
ampersand	to	another	character.	Note,	however,	that	this	character	cannot	be	alphanumeric
or	white	space.	The	second	(ON	option)	and	third	(OFF	option)	control	whether	SQL*Plus
will	look	for	substitution	variables.	In	addition,	the	ON	option	changes	the	value	of	the

character	back	to	the	ampersand.

Summary
In	this	chapter,	you	learned	about	PL/SQL	architecture	and	how	it	may	be	used	in	a
multitier	environment.	You	also	learned	how	PL/SQL	is	able	to	interact	with	users	via
substitution	variables	and	the	DBMS_OUTPUT.PUT_LINE	statement.	Finally,	you
learned	about	two	PL/SQL	development	tools,	SQL	Developer	and	SQL*Plus.	The
examples	shown	in	this	chapter	were	executed	in	both	tools	to	illustrate	the	differences
between	them.	The	main	difference	between	the	two	is	that	SQL	Developer	has	a
graphical	user	interface	and	SQL*Plus	has	a	command-line	interface.	The	PL/SQL
examples	used	throughout	this	book	may	be	executed	in	either	tool	with	the	same	results.
Depending	on	your	preference,	you	may	choose	one	tool	over	the	other.	However,	it	is	a
good	idea	to	become	familiar	with	both,	as	these	tools	are	part	of	almost	every	Oracle
database	installation.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

2.	PL/SQL	Language	Fundamentals

In	this	chapter,	you	will	learn	about

	PL/SQL	Programming	Fundamentals

In	the	Introduction	and	Chapter	1,	you	learned	about	the	difference	between	machine
language	and	a	programming	language.	You	have	also	learned	how	PL/SQL	differs	from
SQL	and	how	the	PL/SQL	basic	block	structure	works.	This	is	similar	to	learning	the
history	behind	a	foreign	language	and	the	context	in	which	it	is	used.	To	use	the	PL/SQL
language,	you	must	learn	the	keywords,	including	what	they	mean	and	when	and	how	to
use	them.	First,	you	will	encounter	the	different	types	of	keywords.	You	will	then
encounter	their	full	syntax.	Finally,	in	this	chapter,	you	will	expand	on	simple	block
structure	with	an	exploration	of	scope	and	nesting	blocks.

Lab	2.1:	PL/SQL	Programming	Fundamentals

After	this	lab,	you	will	be	able	to

	Describe	PL/SQL	Language	Components

	Explain	the	Use	of	PL/SQL	Variables

	Identify	PL/SQL	Reserved	Words

	Explain	the	Use	of	Identifiers	in	PL/SQL

	Describe	Anchored	Data	Types

	Discuss	the	Scope	of	a	Block,	Nested	Blocks,	and	Labels

In	most	languages,	you	have	only	two	sets	of	characters:	numbers	and	letters.	Some
languages,	such	as	Hebrew	or	Tibetan,	have	specific	characters	for	vowels	that	are	not
placed	in	line	with	consonants.	Other	languages,	such	as	Japanese,	have	three	character
sets:	one	for	words	originally	taken	from	the	Chinese	language,	another	set	for	native
Japanese	words,	and	a	third	for	other	foreign	words.	To	speak	any	foreign	language,	you
must	begin	by	learning	these	character	sets.	You	then	progress	to	learn	how	to	make	words
from	these	character	sets.	Finally,	you	learn	the	parts	of	speech	and	can	begin	speaking	the
language.

You	can	think	of	PL/SQL	as	being	a	more	complex	language	because	it	has	many
character	types	and,	additionally,	many	types	of	words	or	lexical	units	that	are	made	from
these	character	sets.	Once	you	learn	these	building	blocks,	you	can	progress	to	learn	the
structure	of	the	PL/SQL	language.

PL/SQL	Language	Components

Character	Types

The	PL/SQL	engine	accepts	four	types	of	characters:	letters,	digits,	symbols	(*,	+,	–,	=,
and	so	on),	and	white	space.	When	elements	from	one	or	more	of	these	character	types	are
joined	together,	they	create	a	lexical	unit	(lexical	units	can	be	a	combination	of	character
types).	The	lexical	units	are	the	words	of	the	PL/SQL	language.	First	you	need	to	learn	the
PL/SQL	vocabulary,	and	then	you	will	move	on	to	the	syntax,	or	grammar.	Soon	you	can
start	talking	in	PL/SQL.

Lexical	Units

A	language	such	as	English	contains	different	parts	of	speech.	Each	part	of	speech,	such	as
a	verb	or	a	noun,	behaves	in	a	different	way	and	must	be	used	according	to	specific	rules.
Likewise,	a	programming	language	has	lexical	units	that	are	the	building	blocks	of	the
language.	PL/SQL	lexical	units	are	classified	into	one	of	the	following	five	groups:

1.	Identifiers.	Identifiers	must	begin	with	a	letter	and	may	be	up	to	30	characters	long.
A	PL/SQL	manual	provides	a	more	detailed	list	of	restrictions.	Generally,	if	you
stick	with	characters,	numbers,	and	“	”,	and	you	avoid	reserved	words,	you	will	not
run	into	problems.

2.	Reserved	words.	Reserved	words	are	words	that	PL/SQL	saves	for	its	own	use	(e.g.,
BEGIN,	END,	SELECT).

3.	Delimiters.	These	are	characters	that	have	special	meaning	to	PL/SQL,	such	as
arithmetic	operators	and	quotation	marks.

4.	Literals.	A	literal	is	any	value	(character,	numeric,	or	Boolean	[true/false])	that	is
not	an	identifier.	Examples	of	literals	include	123,	“Declaration	of	Independence,”
and	FALSE.

5.	Comments.	These	can	be	either	single-line	comments	(i.e.,	—)	or	multiline
comments	(i.e.,	/*	*/).

See	Appendix	A,	“PL/SQL	Formatting	Guide,”	for	details	on	formatting.

The	PL/SQL	engine	recognizes	different	characters	as	having	different	meanings	and,
therefore,	processes	them	differently.	PL/SQL	is	neither	a	pure	mathematical	language	nor
a	spoken	language,	yet	it	contains	elements	of	both.	Letters	will	form	various	lexical	units
such	as	identifiers	or	keywords,	mathematic	symbols	will	form	lexical	units	known	as
delimiters	that	will	perform	an	operation,	and	other	symbols,	such	as	/*,	indicate
comments	that	should	not	be	processed.

PL/SQL	Variables
Variables	may	be	used	to	hold	a	temporary	value.
Click	here	to	view	code	image

Syntax	:	<variable-name>	<data	type>	[optional	default	¬assignment]

Variables	may	also	be	known	as	identifiers.	There	are	some	restrictions	that	you	need	to
be	familiar	with.	Specifically,	variables	must	begin	with	a	letter	and	may	be	up	to	30
characters	long.	Consider	the	following	example,	which	contains	a	list	of	valid	identifiers:

For	Example		ch02_1a.sql
DECLARE

v_student_id

v_last_name

V_LAST_NAME

apt_#

Note	that	the	identifiers	v_last_name	and	V_LAST_NAME	are	considered	identical,
because	PL/SQL	is	not	case	sensitive.

Next,	consider	an	example	of	illegal	identifiers:

For	Example
X+Y

1st_year

student	ID

The	identifier	X+Y	is	illegal	because	it	contains	the	“+”	sign.	This	sign	is	reserved	by
PL/SQL	to	denote	an	addition	operation,	and	it	is	referred	to	as	a	mathematical	symbol.
The	identifier	1st_year	is	illegal	because	it	starts	with	a	number.	Finally,	the	identifier
student	ID	is	illegal	because	it	contains	a	space.

Now	consider	another	example:

For	Example
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		first&last_names	VARCHAR2(30);

BEGIN

		first&last_names	:=	‘TEST	NAME’;

		DBMS_OUTPUT.PUT_LINE(first&last_names);

END;

In	this	example,	you	declare	a	variable	called	first&last_names.	Next,	you	assign	a
value	to	this	variable	and	display	this	value	on	the	screen.

When	run,	this	example	produces	the	following	output	in	SQL*Plus:
Click	here	to	view	code	image

Enter	value	for	last_names:	Ben

old		2:			first&last_names	VARCHAR2(30);

new		2:			firstBen	VARCHAR2(30);

Enter	value	for	last_names:	Ben

old		4:			first&last_names	:=	‘TEST	NAME’;

new		4:			firstBen	:=	‘TEST	NAME’;

Enter	value	for	last_names:	Ben

old		5:			DBMS_OUTPUT.PUT_LINE(first&last_names);

new		5:			DBMS_OUTPUT.PUT_LINE(firstBen);

TEST	NAME

PL/SQL	procedure	successfully	completed.

When	you	run	this	example	in	SQL	Developer,	you	will	get	a	slightly	different
response.	Instead	of	seeing	the	line	“enter	value	for	Last	Name,”	you	will	see	a	dialog	box
that	says	“Enter	Substitution	Values”	with	a	box	for	Last_Name.	This	is	how	SQL
Developer	works	with	variables.

Consider	the	output	produced.	Because	an	ampersand	(&)	is	part	of	the	name	of	the
variable	first&last_names,	the	portion	of	the	variable	is	considered	to	be	a
substitution	variable	(you	learned	about	substitution	variables	in	Chapter	1).	In	other
words,	the	portion	of	the	variable	name	after	the	ampersand	(last_names)	is	treated
by	the	PL/SQL	compiler	as	a	substitution	variable.	As	a	result,	you	are	prompted	to	enter
the	value	for	the	last_names	variable	every	time	the	compiler	encounters	it.

While	this	example	does	not	produce	any	syntax	errors	(it	would	if	you	don’t	give	the
same	response	to	each	prompt),	the	variable	first&last_names	is	still	an	invalid
identifier	because	the	ampersand	character	is	reserved	for	substitution	variables.	To	avoid
this	problem,	change	the	name	of	the	variable	from	first&last_names	to
first_and_last_names.	In	other	words,	you	should	use	an	ampersand	sign	in	the
name	of	a	variable	only	when	you	use	it	as	a	substitution	variable	in	your	program.	It	is
also	important	to	consider	which	type	of	program	you	are	developing	and	in	which	you	are
running	your	PL/SQL	statements.	This	would	be	true	if	the	program	(or	PL/SQL	block)
will	be	executed	by	SQL*Plus.	Later,	when	you	write	stored	code,	you	would	not	use	the
ampersand	but	you	will	make	use	of	parameters.

By	the	Way

If	you	are	using	SQL	Developer,	you	will	need	to	go	the	menu	view	and	click
on	“DBMS	Output”	prior	to	running	this	script.	This	will	open	a	new	window
that	shows	only	the	output	script.	There	will	be	three	windows	in	the	SQL
Worksheet.	The	first	window	is	where	you	put	your	PL/SQL	or	SQL
statement.	The	second	window	is	the	script	output;	you	will	see	both	Oracle
messages	and	the	DBMS	output	here	when	you	have	SET	SERVEROUTPUT
ON.	The	third	window,	the	DBMS	output,	shows	only	DBMS_OUTPUT	that
you	have	in	the	script.	Click	on	the	pencil	with	the	eraser	icon	to	clear	the
output	windows.

For	Example		ch02_1b.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_name	VARCHAR2(30);

		v_dob	DATE;

		v_us_citizen	BOOLEAN;

BEGIN

		DBMS_OUTPUT.PUT_LINE(v_name||‘born	on’||v_dob);

END;

When	this	example	is	run	in	SQL*Plus	or	SQL	Developer,	you	would	see	the	output
born	on.	The	reason	is	that	the	variables	v_name	and	v_dob	have	no	values.

Three	variables	are	declared.	When	each	one	is	declared,	its	initial	value	is	null.

v_name	is	set	as	a	VARCHAR2	with	a	length	of	30,	v_dob	is	set	as	a	character	type	date,
and	v_us_citizen	is	set	to	BOOLEAN.	Once	the	executable	section	begins,	the
variables	have	no	value	and,	therefore,	when	DBMS_OUTPUT	is	told	to	print	their	values,
it	prints	nothing.
This	case	can	be	seen	when	the	variables	are	replaced	as	follows:	Instead	of	v_name,

use	COALESCE(v_name,	‘No	Name’);	and	instead	of	v_dob,	use	COALESCE
(v_dob,	‘01-Jan-1999’).	Then	run	the	same	block	and	you	will	get

No	Name	born	on	01-Jan-1999

To	make	use	of	a	variable,	you	must	declare	it	in	the	declaration	section	of	the	PL/SQL
block.	You	will	have	to	give	it	a	name	and	state	its	data	type.	You	also	have	the	option	to
give	your	variable	an	initial	value.	Note	that	if	you	do	not	assign	an	initial	value	to	a
variable,	its	value	will	be	null.	It	is	also	possible	to	constrain	the	declaration	to	“not	null,”
in	which	case	you	must	assign	an	initial	value.	Variables	must	first	be	declared;	only	then
can	they	be	referenced.	PL/SQL	does	not	allow	forward	references.	You	can	set	the
variable	to	be	a	constant,	which	means	it	cannot	change.

PL/SQL	Reserved	Words
Reserved	words	are	ones	that	PL/SQL	saves	for	its	own	use	(e.g.,	BEGIN,	END,	and
SELECT).	You	cannot	use	reserved	words	for	names	of	variables,	literals,	or	user-defined
exceptions.

For	Example
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		exception	VARCHAR2(15);

BEGIN

		exception	:=	‘This	is	a	test’;

		DBMS_OUTPUT.PUT_LINE(exception);

END;

In	this	example,	you	declare	a	variable	called	exception.	Next,	you	initialize	this
variable	and	display	its	value	on	the	screen.

This	example	illustrates	an	invalid	use	of	reserved	words.	To	the	PL/SQL	compiler,
“exception”	is	a	reserved	word	that	denotes	the	beginning	of	the	exception-handling
section.	As	a	result,	this	word	cannot	be	used	to	name	a	variable.	This	small	piece	of	code
will	produce	a	long	error	message.	The	most	important	part	of	this	error	message	is	the
following	section:
Click	here	to	view	code	image

exception	VARCHAR2(15);

ORA-06550:	line	2,	column	4:

PLS-00103:	Encountered	the	symbol	“EXCEPTION”	when	expecting	one	of	the

following:

		begin	function	pragma	procedure	subtype	type	<an	identifier>

		<a	double-quoted	delimited-identifier>	current	cursor	delete

www.allitebooks.com

http://www.allitebooks.org

		exists	prior…../

Here	is	a	question	you	should	ask	yourself:	If	you	did	not	know	that	the	word
“exception”	is	a	reserved	word,	do	you	think	you	would	attempt	to	debug	the	preceding
script	after	looking	at	this	error	message?

Identifiers	in	PL/SQL
Take	a	look	at	the	use	of	identifiers	in	the	following	example:

For	Example
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		v_var1	VARCHAR2(20);

		v_var2	VARCHAR2(6);

		v_var3	NUMBER(5,3);

BEGIN

		v_var1	:=	‘string	literal’;

		v_var2	:=	‘12.345’;

		v_var3	:=	12.345;

		DBMS_OUTPUT.PUT_LINE(‘v_var1:	‘||v_var1);

		DBMS_OUTPUT.PUT_LINE(‘v_var2:	‘||v_var2);

		DBMS_OUTPUT.PUT_LINE(‘v_var3:	‘||v_var3);

END;

In	this	example,	you	declare	and	initialize	three	variables.	The	values	that	you	assign	to
them	are	literals.	The	first	two	values,	'string	literal'	and	'12.345'	are	string
literals	because	they	are	enclosed	by	single	quotes.	The	third	value,	12.345,	is	a	numeric
literal.	When	run,	the	example	produces	the	following	output:
Click	here	to	view	code	image

v_var1:	string	literal

v_var2:	12.345

v_var3:	12.345

PL/SQL	procedure	successfully	completed.

Consider	another	example	that	uses	numeric	literals.

For	Example
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		v_var1	NUMBER(2)	:=	123;

		v_var2	NUMBER(3)	:=	123;

		v_var3	NUMBER(5,3)	:=	123456.123;

BEGIN

		DBMS_OUTPUT.PUT_LINE(‘v_var1:	‘||v_var1);

		DBMS_OUTPUT.PUT_LINE(‘v_var2:	‘||v_var2);

		DBMS_OUTPUT.PUT_LINE(‘v_var3:	‘||v_var3);

END;

In	this	example,	you	declare	and	initialize	three	numeric	variables.	The	first	declaration
and	initialization	(v_var1	NUMBER(2)	:=	123)	causes	an	error	because	the	value
123	exceeds	the	specified	precision.	The	second	variable	declaration	and	initialization

(v_var2	NUMBER(3)	:=	123)	does	not	cause	any	errors	because	the	value	123
corresponds	to	the	specified	precision.	The	last	declaration	and	initialization	(v_var3
NUMBER(5,3)	:=	123456.123)	causes	an	error	because	the	value	123456.123
exceeds	the	specified	precision.	As	a	result,	this	example	produces	the	following	output:
Click	here	to	view	code	image

ORA-06512:	at	line	2	ORA-06502:	PL/SQL:	numeric	or	value	error:	number

precision	too	large

ORA-06512:	at	line	2

Anchored	Data	Types
The	data	type	that	you	assign	to	a	variable	can	be	based	on	a	database	object.	This
assignment	is	called	an	anchored	declaration	since	the	variable’s	data	type	depends	on	that
of	the	underlying	object.	It	is	wise	to	make	use	of	anchored	data	types	when	possible	so
that	you	do	not	have	to	update	your	PL/SQL	when	the	data	types	of	base	objects	change.
Click	here	to	view	code	image

Syntax:	<variable_name>	<type	attribute>%TYPE

The	type	is	a	direct	reference	to	a	database	column.

For	Example		ch02_2a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_name	student.first_name%TYPE;

		v_grade	grade.numeric_grade%TYPE;

BEGIN

		DBMS_OUTPUT.PUT_LINE(NVL(v_name,	‘No	Name	‘)||

				’	has	grade	of	‘||NVL(v_grade,	0));

END;

In	the	preceding	example,	the	variable	v_name	was	declared	with	the	identical	data
type	as	the	column	first_name	from	the	database	table	STUDENT:
varchar2(25).	Additionally,	the	variable	v_grade	was	declared	with	the	identical
data	type	as	the	column	grade_numeric	on	the	grade	database	table:	number
NUMBER(3).	Each	has	a	value	of	null.	The	results	of	this	example	would	be	as	follows:
Click	here	to	view	code	image

No	Name	has	grade	of	0

PL/SQL	procedure	successfully	completed.

Most	Common	Data	Types

As	a	programmer,	it	is	important	to	know	the	major	data	types	that	you	can
use	in	a	programming	language.	This	will	determine	the	various	options	you
have	to	solve	a	programmatic	problem.	Also,	you	need	to	keep	in	mind	that
some	functions	work	only	on	certain	types	of	data	types.	The	following	is	a
list	of	the	major	data	types	in	the	Oracle	platform	that	you	can	use	in
PL/SQL.
VARCHAR2(maximum_length)

	Stores	variable-length	character	data.

	Takes	a	required	parameter	that	specifies	a	maximum	length	up	to	32,767
bytes,	with	the	Extended	Data	Types	parameter	enabled.	Otherwise,	the
maximum	length	is	4000	bytes.

	Does	not	use	a	constant	or	variable	to	specify	the	maximum	length;	an	integer
literal	must	be	used.

CHAR[(maximum_length)]

	Stores	fixed-length	(blank-padded	if	necessary)	character	data.

	Takes	an	optional	parameter	that	specifies	a	maximum	length	up	to	32,767
bytes.

	Does	not	use	a	constant	or	variable	to	specify	the	maximum	length;	an	integer
literal	must	be	used.	If	maximum	length	is	not	specified,	it	defaults	to	1.

	The	maximum	width	of	a	CHAR	database	column	is	2000	bytes;	the	default	is
1	byte.

NUMBER[(precision,	scale)]

	Stores	fixed	or	floating-point	numbers	of	virtually	any	size.

	The	precision	is	the	total	number	of	digits.

	The	scale	determines	where	rounding	occurs.

	It	is	possible	to	specify	a	precision	and	omit	the	scale,	in	which	case	the	scale
is	0	and	only	integers	are	allowed.

	Constants	or	variables	cannot	be	used	to	specify	a	precision	and	scale;	integer
literals	must	be	used.

	The	maximum	precision	of	a	NUMBER	value	is	38	decimal	digits.

	The	scale	can	range	from	0	to	127.

	For	instance,	a	scale	of	2	rounds	to	the	nearest	hundredth	(3.456	becomes
3.46).

	The	scale	can	be	negative,	which	causes	rounding	to	the	left	of	the	decimal
point.	For	example,	a	scale	of	–3	rounds	to	the	nearest	thousandth	(3456
becomes	3000).	A	scale	of	zero	rounds	to	the	nearest	whole	number.	If	you	do
not	specify	the	scale,	it	defaults	to	zero.

DATE

	Stores	fixed-length	date	values.

	Valid	dates	for	DATE	variables	include	January	1,	4712	BC,	to	December	31,
AD	9999.

	When	stored	in	a	database	column,	date	values	include	the	time	of	day	in
seconds	since	midnight.	The	date	portion	defaults	to	the	first	day	of	the	current
month;	the	time	portion	defaults	to	midnight.

	Dates	are	actually	stored	in	binary	format	and	will	be	displayed	according	to
the	default	format.

LONG

	Stores	variable-length	character	strings.

	The	LONG	data	type	is	like	the	VARCHAR2	data	type,	except	that	the
maximum	length	of	a	LONG	value	is	2	gigabytes.

	You	cannot	select	a	value	longer	than	4000	bytes	from	a	LONG	column	into	a
LONG	variable.

	LONG	columns	can	store	text,	arrays	of	characters,	or	even	short	documents.
You	can	reference	LONG	columns	in	UPDATE,	INSERT,	and	(most)	SELECT
statements,	but	not	in	expressions,	SQL	function	calls,	or	certain	SQL	clauses,
such	as	WHERE,	GROUP	BY,	and	CONNECT	BY.

LONG	RAW

	Stores	raw	binary	data	of	variable	length	up	to	2	gigabytes.

LOB	(Large	Object)

	There	are	four	types	of	LOBs:	BLOB,	CLOB,	NCLOB,	and	BFILE.	These	can
store	binary	objects,	such	as	image	or	video	files,	up	to	4	gigabytes	in	length.

	A	BFILE	is	a	large	binary	file	stored	outside	the	database.	The	maximum	size
is	4	gigabytes.

RAW

	Data	type	for	storing	variable	length	binary	data.

	Maximum	size	is	32,767	bytes,	with	the	Extended	Data	Types	parameter
enabled.	Otherwise,	the	maximum	length	is	2000	bytes.

Declare	and	Initialize	Variables
In	PL/SQL,	variables	must	be	declared	before	they	can	be	referenced.	This	is	done	in	the
initial	declarative	section	of	a	PL/SQL	block.	Recall	that	each	declaration	must	be
terminated	with	a	semicolon.	Variables	can	be	assigned	using	the	assignment	operator
“:=”.	If	you	declare	a	variable	to	be	a	constant,	it	will	retain	the	same	value	throughout	the
block;	to	do	this,	you	must	give	it	a	value	at	declaration.

Type	the	following	statements	into	a	text	file	and	run	the	script	from	a	SQL*Plus	or
SQL	Developer	session.
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_cookies_amt	NUMBER	:=	2;

		v_calories_per_cookie	CONSTANT	NUMBER	:=	300;

BEGIN

		DBMS_OUTPUT.PUT_LINE(‘I	ate	‘	||	v_cookies_amt	||

				’	cookies	with	‘	||		v_cookies_amt	*

				v_calories_per_cookie	||	‘	calories.’);

		v_cookies_amt	:=	3;

		DBMS_OUTPUT.PUT_LINE(‘I	really	ate	‘	||

				v_cookies_amt

				||	‘	cookies	with	‘	||		v_cookies_amt	*

				v_calories_per_cookie	||	‘	calories.’);

		v_cookies_amt	:=	v_cookies_amt	+	5;

		DBMS_OUTPUT.PUT_LINE(‘The	truth	is,	I	actually	ate	‘

				||	v_cookies_amt	||	‘	cookies	with	‘	||

		v_cookies_amt	*	v_calories_per_cookie

				||	‘	calories.’);

END;

The	output	of	running	the	preceding	script	will	be	as	follows:
Click	here	to	view	code	image

I	ate	2	cookies	with	600	calories.

I	really	ate	3	cookies	with	900	calories.

The	truth	is,	I	actually	ate	8	cookies	with

2400	calories.

PL/SQL	procedure	successfully	completed.

Initially	the	variable	v_cookies_amt	is	declared	to	be	a	NUMBER	with	the	value	of
2,	and	the	variable	v_calories_per_cookie	is	declared	to	be	a	CONSTANT
NUMBER	with	a	value	of	300	(since	it	is	declared	to	be	a	CONSTANT,	its	value	will	not
change).	In	the	course	of	the	procedure,	the	value	of	v_cookies_amt	is	set	to	be	3,	and
finally	it	is	set	to	be	its	current	value,	3	plus	5,	thus	becoming	8.

For	Example		ch02_3a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_lname	VARCHAR2(30);

		v_regdate	DATE;

		v_pctincr	CONSTANT	NUMBER(4,2)	:=	1.50;

		v_counter	NUMBER	:=	0;

		v_new_cost	course.cost%TYPE;

		v_YorN	BOOLEAN	:=	TRUE;

BEGIN

v_counter	:=	((v_counter	+	5)*2)	/	2;

v_new_cost	:=	(v_new_cost	*	v_counter)/4;

—

		v_counter	:=	COALESCE(v_counter,	0)	+	1;

		v_new_cost	:=	800	*	v_pctincr;

—

			DBMS_OUTPUT.PUT_LINE(V_COUNTER);

			DBMS_OUTPUT.PUT_LINE(V_NEW_COST);

END;

PL/SQL	variables	are	held	together	with	expressions	and	operators.	An	expression	is	a
sequence	of	variables	and	literals,	separated	by	operators.	These	expressions	are	then	used
to	manipulate	data,	perform	calculations,	and	compare	data.

Expressions	are	composed	of	a	combination	of	operands	and	operators.	An	operand	is
an	argument	to	the	operator;	it	can	be	a	variable,	a	constant,	a	function	call.	An	operator	is

what	specifies	the	action	(+,	**,	/,	OR,	and	so	on).

You	can	use	parentheses	to	control	the	order	in	which	Oracle	evaluates	an	expression.
Initially	the	variable	v_lname	is	declared	as	a	data	type	VARCHAR2	with	a	length	of	30
and	a	value	of	null.	The	variable	v_regdate	is	declared	as	a	date	data	type	with	a	value
of	null.	The	variable	v_pctincr	is	declared	as	a	CONSTANT	NUMBER	with	a	length	of
4,	a	precision	of	2,	and	a	value	of	1.15.	The	variable	v_counter	is	declared	as	a
NUMBER	with	a	value	of	0.	The	variable	v_YorN	is	declared	as	a	variable	of	BOOLEAN
data	type	and	a	value	of	TRUE.

Once	the	executable	section	is	complete,	the	variable	v_counter	will	be	changed
from	null	to	1.	The	value	of	v_new_cost	will	change	from	null	to	1200	(800	*	1.50).

A	common	way	to	find	out	the	value	of	a	variable	at	different	points	in	a	block	is	to	add
DBMS_OUTPUT.PUT_LINE(v_variable_name);	statements	throughout	the	block.

The	value	of	the	variable	v_counter	will	then	change	from	1	to	6,	which	is	((1	+	5)
*2))/2,	and	the	value	of	new_cost	will	go	from	1200	to	1800,	which	is	(800	*	6)/4.	The
output	from	running	this	procedure	will	be
Click	here	to	view	code	image

6

1800

PL/SQL	procedure	successfully	completed.

Operators	(Delimiters):	The	Separators	in	an	Expression

As	a	programmer,	it	is	important	to	know	the	operators	that	you	can	use	in	a
programming	language.	This	will	determine	the	various	options	you	have	to
solve	a	programmatic	problem.	The	following	is	a	list	of	the	operators	you
can	use	in	PL/SQL.
Click	here	to	view	code	image

Arithmetic	(**	,	*	,	/	,	+	,	-)

Comparison(=,	<>,	!=,	<,	>,	<=,	>=,	LIKE,	IN,	BETWEEN,	IS	NULL,	IS

NOT	NULL,	NOT	IN)

Logical	(AND,	OR,	NOT)

String	(||,	LIKE)

Expressions

Operator	Precedence

			**	,	NOT

			+,	-	(arithmetic	identity	and	negation),	*,	/,	,	-	,	||,	=,	<>,	!=

,

			<=	,	>=	,	<	,	>	,	LIKE,	BETWEEN,	IN,	IS	NULL

AND—logical	conjunction

OR—logical	inclusion

Scope	of	a	Block,	Nested	Blocks,	and	Labels
When	making	use	of	variables	in	a	PL/SQL	block,	it	is	important	to	understand	their
scope.	This	will	allow	you	to	understand	how	and	when	you	can	make	use	of	variables.	It
will	also	help	you	debug	the	programs	you	write.	The	opening	section	of	your	PL/SQL
block	contains	the	declaration	section—that	is,	the	section	where	you	declare	the	variables
that	the	block	will	use.

Scope	of	a	Variable

The	scope,	or	existence,	of	structures	defined	in	the	declaration	section	is	local	to	that
block.	The	block	also	provides	the	scope	for	exceptions	that	are	declared	and	raised.
Exceptions	are	covered	in	more	detail	in	Chapters	8,	9,	and	10.

The	scope	of	a	variable	is	the	portion	of	the	program	in	which	the	variable	can	be
accessed,	or	where	the	variable	is	visible.	It	usually	extends	from	the	moment	of
declaration	until	the	end	of	the	block	in	which	the	variable	was	declared.	The	visibility	of
a	variable	is	the	part	of	the	program	where	the	variable	can	be	accessed.
Click	here	to	view	code	image

BEGIN		—	outer	block

					BEGIN	—	inner	block

											…;

					END;		—	end	of	inner	block

END;			—	end	of	outer	block

Labels	and	Nested	Blocks

Labels	can	be	added	to	a	block	to	improve	readability	and	to	qualify	the	names	of
elements	that	exist	under	the	same	name	in	nested	blocks.	The	name	of	the	block	must
precede	the	first	line	of	executable	code	(either	BEGIN	or	DECLARE)	as	follows:

For	Example		ch02_4a.sql
Click	here	to	view	code	image

set	serveroutput	on

		<<	find_stu_num	>>

		BEGIN

				DBMS_OUTPUT.PUT_LINE(‘The	procedure

											find_stu_num	has	been	executed.’);

		END	find_stu_num;

The	label	optionally	appears	after	END.	For	commenting	purposes,	you	may
alternatively	use	either	--	or	/*	…	*/.	Blocks	can	be	nested	in	the	main	section	or	in	an
exception	handler.	A	nested	block	is	a	block	that	is	placed	fully	within	another	block.	Use
of	this	type	of	nesting	affects	the	scope	and	visibility	of	variables.	The	scope	of	a	variable
in	a	nested	block	begins	when	memory	is	allocated	for	the	variable	and	extends	from	the
moment	of	declaration	until	the	END	of	the	nested	block	from	which	it	was	declared.	The
visibility	of	a	variable	is	the	part	of	the	program	where	the	variable	can	be	accessed.

For	Example		ch02_4b.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

<<	outer_block	>>

DECLARE

		v_test	NUMBER	:=	123;

BEGIN

		DBMS_OUTPUT.PUT_LINE

				(‘Outer	Block,	v_test:	‘||v_test);

		<<	inner_block	>>

		DECLARE

				v_test	NUMBER	:=	456;

		BEGIN

				DBMS_OUTPUT.PUT_LINE

						(‘Inner	Block,	v_test:	‘||v_test);

				DBMS_OUTPUT.PUT_LINE

						(‘Inner	Block,	outer_block.v_test:	‘||

								Outer_block.v_test);

		END	inner_block;

END	outer_block;

This	example	produces	the	following	output:
Click	here	to	view	code	image

Outer	Block,	v_test:	123

Inner	Block,	v_test:	456

Inner	Block,	outer_block.v_test:	123

For	Example		ch02_5a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		e_show_exception_scope	EXCEPTION;

		v_student_id											NUMBER	:=	123;

BEGIN

	DBMS_OUTPUT.PUT_LINE(‘outer	student	id	is	‘

			||v_student_id);

		DECLARE

			v_student_id				VARCHAR2(8)	:=	125;

		BEGIN

				DBMS_OUTPUT.PUT_LINE(‘inner	student	id	is	‘

						||v_student_id);

				RAISE	e_show_exception_scope;

		END;

EXCEPTION

		WHEN	e_show_exception_scope

		THEN

				DBMS_OUTPUT.PUT_LINE(‘When	am	I	displayed?’);

				DBMS_OUTPUT.PUT_LINE(‘outer	student	id	is	‘

						||v_student_id);

END;

This	example	produces	the	following	output:
outer	student	id	is	123

inner	student	id	is	125

When	am	I	displayed?

outer	student	id	is	123

The	flow	of	logic	in	this	block	is	as	follows:	The	variable
e_Show_Exception_Scope	is	declared	as	an	exception	type	in	the	declaration
section	of	the	block.	There	is	also	a	declaration	of	the	variable	called	v_student_id	of

data	type	NUMBER	that	is	initialized	to	the	number	123.	This	variable	has	a	scope	of	the
entire	block,	but	it	is	visible	only	outside	the	inner	block.	Once	the	inner	block	begins,
another	variable,	named	v_student_id,	is	declared.	This	time	it	is	of	data	type
VARCHAR2(8)	and	is	initialized	to	125.	This	variable	will	have	a	scope	and	visibility
only	within	the	inner	block.	The	use	of	DBMS_OUTPUT	helps	to	show	which	variable	is
visible.	The	inner	block	raises	the	exception	e_Show_Exception_Scope;	as	a
consequence,	the	focus	will	move	out	of	the	execution	section	and	into	the	exception
section.	The	focus	will	look	for	an	exception	named	e_Show_Exception_Scope.
Since	the	inner	block	has	no	exception	with	this	name,	the	focus	will	move	to	the	outer
block’s	exception	section,	where	it	finds	the	exception.	The	inner	variable
v_student_id	is	now	out	of	scope	and	visibility.	The	outer	variable	v_student_id
(which	has	always	been	in	scope)	now	regains	visibility.	Because	the	exception	has	an
IF/THEN	construct,	it	will	execute	the	DBMS_OUTPUT	call.

This	example	illustrates	a	simple	use	of	nested	blocks.	Later	in	the	book	you	will	see
more	complex	examples.	After	you	learn	about	exception	handling	in	Chapters	8,	9,	and
10,	you	will	see	that	there	is	greater	opportunity	to	make	use	of	nested	blocks.

Summary
In	this	chapter,	you	learned	the	fundamentals	of	the	PL/SQL	language.	The	first	section
introduced	the	basic	components	of	the	PL/SQL	language,	which	collectively	allow	you	to
construct	simple	PL/SQL	code.	Then	you	learned	about	variables,	which	allow	you	to
store	values	that	may	change	each	time	the	program	is	run.	You	also	learned	about	the
PL/SQL	keywords;	these	terms	have	specific	meanings	and	cannot	be	used	as	names.
Identifiers	and	anchored	data	types	were	covered	to	help	you	understand	how	data	type
values	are	used.	The	chapter	ended	by	explaining	the	basics	of	a	PL/SQL	block,	as	well	as
how	to	nest	blocks	and	make	use	of	labels	to	organize	your	code.

By	the	Way

The	companion	website	(informit.com/title/0133796787)	provides	additional
exercises	and	suggested	answers	for	this	chapter,	with	discussion	related	to
how	those	answers	resulted.	The	main	purpose	of	these	exercises	is	to	help
you	test	the	depth	of	your	understanding	by	utilizing	all	of	the	skills	that	you
have	acquired	throughout	this	chapter.

http://informit.com/title/0133796787

3.	SQL	in	PL/SQL

In	this	chapter,	you	will	learn	about

	DML	Statements	in	PL/SQL

	Transaction	Control	in	PL/SQL

This	chapter	is	a	collection	of	some	fundamental	elements	of	using	SQL	statements	in
PL/SQL	blocks.	In	the	previous	chapter,	you	initialized	variables	with	the	“:=”	syntax;	in
this	chapter,	we	will	introduce	the	method	of	using	a	SQL	select	statement	to	update	the
value	of	a	variable.	These	variables	can	then	be	used	in	DML	statements	(insert,	delete,	or
update).	Additionally,	we	will	demonstrate	how	you	can	use	a	sequence	in	your	DML
statements	within	a	PL/SQL	block	much	as	you	would	in	a	stand-alone	SQL	statement.

A	transaction	in	Oracle	is	a	series	of	SQL	statements	that	have	been	grouped	together
into	a	logical	unit	by	the	programmer.	A	programmer	chooses	to	do	this	to	maintain	data
integrity.	Each	application	(SQL*Plus,	SQL	Developer,	and	various	third-party	PL/SQL
tools)	maintains	a	single	database	session	for	each	instance	of	a	user	login.	The	changes	to
the	database	that	have	been	executed	by	a	single	application	session	are	not	actually
“saved”	into	the	database	until	a	commit	occurs.	Work	within	a	transaction	up	to	and	just
prior	to	the	commit	can	be	rolled	back;	once	a	commit	has	been	issued,	however,	work
within	that	transaction	cannot	be	rolled	back.	Note	that	those	SQL	statements	should	be
either	committed	or	rejected	as	a	group.

To	exert	transaction	control,	a	SAVEPOINT	statement	can	be	used	to	break	down	large
PL/SQL	statements	into	individual	units	that	are	easier	to	manage.	In	this	chapter,	we	will
cover	the	basic	elements	of	transaction	control	so	you	will	know	how	to	manage	your
PL/SQL	code	through	use	of	the	COMMIT,	ROLLBACK,	and	(principally)	SAVEPOINT
statement.

Lab	3.1:	DML	Statements	in	PL/SQL

After	this	lab,	you	will	be	able	to

	Initialize	Variables	with	SELECT	INTO

	Use	the	SELECT	INTO	Syntax	for	Variable	Initialization

	Use	DML	in	a	PL/SQL	Block

	Make	Use	of	a	Sequence	in	a	PL/SQL	Block

www.allitebooks.com

http://www.allitebooks.org

Initialize	Variables	with	SELECT	INTO
In	PL/SQL,	there	are	two	main	methods	of	giving	values	to	variables	in	a	PL/SQL	block.
The	first	one,	which	you	learned	in	Chapter	1,	is	initialization	with	the	“:=”	syntax.	In	this
lab	we	will	learn	how	to	initialize	a	variable	with	a	select	statement	by	making	use	of	the
SELECT	INTO	syntax.

A	variable	that	has	been	declared	in	the	declaration	section	of	the	PL/SQL	block	can
later	be	given	a	value	with	a	select	statement.	The	correct	syntax	is	as	follows:

SELECT	item_name

INTO			variable_name

FROM			table_name;

Note	that	any	single	row	function	can	be	performed	on	the	item	to	give	the	variable	a
calculated	value.

For	Example		ch03_1a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_average_cost	VARCHAR2(10);

BEGIN

		SELECT	TO_CHAR(AVG(cost),	‘$9,999.99’)

				INTO	v_average_cost

				FROM	course;

		DBMS_OUTPUT.PUT_LINE(‘The	average	cost	of	a	‘||

				‘course	in	the	CTA	program	is	‘||

				v_average_cost);

END;

In	this	example,	a	variable	is	given	the	value	of	the	average	cost	of	a	course	in	the
course	table.	First,	the	variable	must	be	declared	in	the	declaration	section	of	the
PL/SQL	block.	In	this	example,	the	variable	is	given	the	data	type	of	VARCHAR2(10)
because	of	the	functions	used	on	the	data.	The	select	statement	that	would	produce	this
outcome	in	SQL*Plus	would	be
Click	here	to	view	code	image

SELECT	TO_CHAR(AVG(cost),	‘$9,999.99’)

FROM			course;

The	TO_CHAR	function	is	used	to	format	the	cost;	in	doing	this,	the	number	data	type	is
converted	to	a	character	data	type.	Once	the	variable	has	a	value,	it	can	be	displayed	to	the
screen	using	the	PUT_LINE	procedure	of	the	DBMS_OUTPUT	package.	The	output	of	this
PL/SQL	block	would	be:
Click	here	to	view	code	image

The	average	cost	of	a	course	in	the	CTA	program

is	$1,198.33

PL/SQL	procedure	successfully	completed.

In	the	declaration	section	of	the	PL/SQL	block,	the	variable	v_average_cost	is
declared	as	a	varchar2.	In	the	executable	section	of	the	block,	this	variable	is	given	the
value	of	the	average	cost	from	the	course	table	by	means	of	the	SELECT	INTO	syntax.

The	SQL	function	TO_CHAR	is	issued	to	format	the	number.	The	DBMS_OUTPUT
package	is	then	used	to	show	the	result	to	the	screen.

Using	the	SELECT	INTO	Syntax	for	Variable	Initialization
The	previous	PL/SQL	block	may	be	rearranged	so	the	DBMS_OUTPUT	section	is	placed
before	the	SELECT	INTO	statement.

For	Example		ch03_1a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_average_cost	VARCHAR2(10);

BEGIN

		DBMS_OUTPUT.PUT_LINE(‘The	average	cost	of	a	‘||

				‘course	in	the	CTA	program	is	‘||

				v_average_cost);

		SELECT	TO_CHAR(AVG(cost),	‘$9,999.99’)

				INTO	v_average_cost

				FROM	course;

END;

You	will	then	see	the	following	result:
Click	here	to	view	code	image

The	average	cost	of	a	course	in	the	CTA	program	is

PL/SQL	procedure	successfully	completed.

The	variable	v_average_cost	will	be	set	to	NULL	when	it	is	first	declared.	Because
the	DBMS_OUTPUT	section	precedes	the	point	at	which	the	variable	is	given	a	value,	the
output	for	the	variable	will	be	NULL.	After	the	SELECT	INTO	statement,	the	variable
will	be	given	the	same	value	as	in	the	original	block,	but	it	will	not	be	displayed	because
there	is	not	another	DBMS_OUTPUT	line	in	the	PL/SQL	block.

Data	Definition	Language	(DDL)	statements	are	not	valid	in	a	simple	PL/SQL	block
(more	advanced	techniques	such	as	procedures	in	the	DBMS_SQL	package	will	enable	you
to	make	use	of	DDL),	yet	data	manipulation	(using	Data	Manipulation	Language	[DML])
is	easily	achieved	either	by	using	variables	or	by	simply	putting	a	DML	statement	into	a
PL/SQL	block.	Here	is	an	example	of	a	PL/SQL	block	that	updates	an	existing	entry	in	the
zipcode	table.

For	Example		ch03_2a.sql
SET	SERVEROUTPUT	ON

DECLARE

		v_city	zipcode.city%TYPE;

BEGIN

		SELECT	‘COLUMBUS’

				INTO	v_city

				FROM	dual;

		UPDATE	zipcode

					SET	city	=	v_city

			WHERE	ZIP	=	43224;

END;

It	is	also	possible	to	insert	data	into	a	database	table	in	a	PL/SQL	block,	as	shown	in	the
following	example.

For	Example		ch03_3a.sql
Click	here	to	view	code	image

DECLARE

		v_zip	zipcode.zip%TYPE;

		v_user	zipcode.created_by%TYPE;

		v_date	zipcode.created_date%TYPE;

BEGIN

		SELECT	43438,	USER,	SYSDATE

				INTO	v_zip,	v_user,	v_date

				FROM	dual;

		INSERT	INTO	zipcode

				(ZIP,	CREATED_BY	,CREATED_DATE,	MODIFIED_BY,

					MODIFIED_DATE

)

					VALUES(v_zip,	v_user,	v_date,	v_user,	v_date);

END;

By	the	Way

SELECT	statements	in	PL/SQL	that	return	no	rows	or	too	many	rows	will
cause	an	error	to	occur	that	can	be	trapped	by	using	an	exception.	You	will
learn	more	about	handling	exceptions	in	Chapters	8,	9,	and	10.

Using	DML	in	a	PL/SQL	Block
This	section	demonstrates	how	DML	is	used	in	PL/SQL.	The	following	PL/SQL	block
inserts	a	new	student	into	the	student	table.

For	Example		ch03_4a.sql
Click	here	to	view	code	image

BEGIN

		SELECT	MAX(student_id)

				INTO	v_max_id

				FROM	student;

		INSERT	into	student

				(student_id,	last_name,	zip,

					created_by,	created_date,

					modified_by,	modified_date,

					registration_date

)

			VALUES	(v_max_id	+	1,	‘Rosenzweig’,

											11238,	‘BROSENZ	‘,	‘01-JAN-2014’,

											‘BROSENZ’,	‘10-JAN-2014’,	‘15-FEB-2014’

);

END;

To	generate	a	unique	ID,	the	maximum	student_id	is	selected	into	a	variable	and
then	incremented	by	1.	In	this	example,	there	is	a	foreign	key	on	the	zip	item	in	the
student	table,	which	means	that	the	ZIP	code	you	choose	to	enter	must	be	in	the	zipcode
table.

Using	an	Oracle	Sequence

An	Oracle	sequence	is	an	Oracle	database	object	that	can	be	used	to	generate	unique
numbers.	You	can	use	sequences	to	generate	primary	key	values	automatically.

Accessing	and	Incrementing	Sequence	Values

Once	a	sequence	is	created,	you	can	access	its	values	in	SQL	statements	with	these
pseudocolumns:

	CURRVAL:	Returns	the	current	value	of	the	sequence.

	NEXTVAL:	Increments	the	sequence	and	returns	the	new	value.

The	following	example	creates	the	sequence	eseq.

For	Example
CREATE	SEQUENCE	eseq

		INCREMENT	BY	10

The	first	reference	to	ESEQ.NEXTVAL	returns	1.	The	second	returns	11.	Each	subsequent
reference	will	return	a	value	10	greater	than	the	one	previous.

(Even	though	you	will	be	guaranteed	unique	numbers,	you	are	not	guaranteed
contiguous	numbers.	In	some	systems	this	may	be	a	problem—for	example,	when
generating	invoice	numbers.)

Drawing	Numbers	from	a	Sequence

A	sequence	value	can	be	inserted	directly	into	a	table	without	first	selecting	it.	(In	very	old
versions	of	Oracle	prior	to	Oracle	7.3,	it	was	necessary	to	use	the	SELECT	INTO	syntax
and	put	the	new	sequence	number	into	a	variable;	you	could	then	insert	the	variable.)

For	this	example,	a	table	called	test01	will	be	used.	The	table	test01	is	first
created,	followed	by	the	sequence	test_seq.	Then	the	sequence	is	used	to	populate	the
table.

For	Example		ch03_5a.sql
Click	here	to	view	code	image

CREATE	TABLE	test01	(col1	number);

CREATE	SEQUENCE	test_seq

		INCREMENT	BY	5;

BEGIN

		INSERT	INTO	test01

				VALUES	(test_seq.NEXTVAL);

END;

/

Select	*	FROM	test01;

Using	a	Sequence	in	a	PL/SQL	Block
In	this	example,	a	PL/SQL	block	is	used	to	insert	a	new	student	in	the	student	table.
The	PL/SQL	code	makes	use	of	two	variables,	USER	and	SYSDATE,	that	are	used	in	the
select	statement.	The	existing	student_id_seq	sequence	is	used	to	generate	a	unique
ID	for	the	new	student.

For	Example		ch03_6a.sql
Click	here	to	view	code	image

DECLARE

		v_user	student.created_by%TYPE;

		v_date	student.created_date%TYPE;

BEGIN

		SELECT	USER,	sysdate

				INTO	v_user,	v_date

				FROM	dual;

	INSERT	INTO	student

			(student_id,	last_name,	zip,

				created_by,	created_date,	modified_by,

				modified_date,	registration_date

)

			VALUES	(student_id_seq.nextval,	‘Smith’,

											11238,	v_user,	v_date,	v_user,	v_date,

											v_date

);

END;

In	the	declaration	section	of	the	PL/SQL	block,	two	variables	are	declared.	They	are
both	set	to	be	data	types	within	the	student	table	using	the	%TYPE	method	of
declaration.	This	ensures	the	data	types	match	the	columns	of	the	tables	into	which	they
will	be	inserted.	The	two	variables	v_user	and	v_date	are	given	values	from	the
system	by	means	of	SELECT	INTO	statements.	The	value	of	the	student_id	is
generated	by	using	the	next	value	of	the	student_id_seq	sequence.

Lab	3.2:	Transaction	Control	in	PL/SQL

After	this	lab,	you	will	be	able	to

	Use	the	COMMIT,	ROLLBACK,	and	SAVEPOINT	Statements

	Put	Together	DML	and	Transaction	Control

Using	COMMIT,	ROLLBACK,	and	SAVEPOINT
Transactions	are	a	means	to	break	programming	code	into	manageable	units.	Grouping
transactions	into	smaller	elements	is	a	standard	practice	that	ensures	an	application	will
save	only	correct	data.	Initially,	any	application	will	have	to	connect	to	the	database	to
access	the	data.	When	a	user	is	issuing	DML	statements	in	an	application,	however,	these
changes	are	not	visible	to	other	users	until	a	COMMIT	or	ROLLBACK	has	been	issued.	The
Oracle	platform	guarantees	a	read-consistent	view	of	the	data.	Until	that	point,	all	data	that
have	been	inserted	or	updated	will	be	held	in	memory	and	will	be	available	only	to	the
current	user.	The	rows	that	have	been	changed	will	be	locked	by	the	current	user	and	will
not	be	available	for	updating	to	other	users	until	the	locks	have	been	released.	A	COMMIT
or	ROLLBACK	statement	will	release	these	locks.	Transactions	can	be	controlled	more
readily	by	marking	points	of	the	transaction	with	the	SAVEPOINT	command.

	COMMIT:	Makes	events	within	a	transaction	permanent.

	ROLLBACK:	Erases	events	within	a	transaction.

Additionally,	you	can	use	a	SAVEPOINT	to	control	transactions.	Transactions	are
defined	in	the	PL/SQL	block	from	one	SAVEPOINT	to	another.	The	use	of	the
SAVEPOINT	command	allows	you	to	break	your	SQL	statements	into	units	so	that	in	a
given	PL/SQL	block,	some	units	can	be	committed	(saved	to	the	database),	others	can	be
rolled	back	(undone),	and	so	forth.

By	the	Way

The	Oracle	platform	makes	a	distinction	between	a	transaction	and	a	PL/SQL
block.	The	start	and	end	of	a	PL/SQL	block	do	not	necessarily	mean	the	start
and	end	of	a	transaction.

To	demonstrate	the	need	for	transaction	control,	we	will	examine	a	two-step	data
manipulation	process.	Suppose	that	the	fees	for	all	courses	in	the	CTA	database	that	have	a
prerequisite	course	need	to	be	increased	by	10	percent;	at	the	same	time,	all	courses	that
do	not	have	a	prerequisite	need	to	be	decreased	by	10	percent.	This	is	a	two-step	process.
If	the	first	step	is	successful	but	the	second	step	is	not,	then	the	data	concerning	course
cost	would	be	inconsistent	in	the	database.	Because	this	adjustment	is	based	on	a	change
in	percentage,	there	would	be	no	way	to	track	which	part	of	this	course	adjustment	was
successful	and	which	part	was	not.

In	the	following	example,	one	PL/SQL	block	performs	two	updates	on	the	cost	item	in
the	course	table.	In	the	first	step	(this	code	is	commented	for	the	purpose	of
emphasizing	each	update),	the	cost	is	updated	with	a	cost	that	is	10	percent	less	whenever
the	course	does	not	have	a	prerequisite.	In	the	second	step,	the	cost	is	increased	by	10
percent	whenever	the	course	has	a	prerequisite.

For	Example		ch03_7a.sql
Click	here	to	view	code	image

BEGIN

—	STEP	1

			UPDATE	course

					SET	cost	=	cost	-	(cost	*	0.10)

				WHERE	prerequisite	IS	NULL;

—	STEP	2

			UPDATE	course

					SET	cost	=	cost	+	(cost	*	0.10)

				WHERE	prerequisite	IS	NOT	NULL;

END;

Let’s	assume	that	the	first	update	statement	succeeds,	but	the	second	update	statement
fails	because	the	network	went	down.	The	data	in	the	course	table	is	now	inconsistent
because	courses	with	no	prerequisite	have	had	their	cost	reduced	but	courses	with
prerequisites	have	not	been	adjusted.	To	prevent	this	sort	of	situation,	statements	must	be
combined	into	a	transaction.	Thus	either	both	statements	will	succeed	or	both	statements
will	fail.

A	transaction	usually	combines	SQL	statements	that	represent	a	logical	unit	of	work.
The	transaction	begins	with	the	first	SQL	statement	issued	after	the	previous	transaction,
or	with	the	first	SQL	statement	issued	after	connecting	to	the	database.	The	transaction
ends	with	the	COMMIT	or	ROLLBACK	statement.

COMMIT

When	a	COMMIT	statement	is	issued	to	the	database,	the	transaction	has	ended,	and	the
following	results	are	true:

	All	work	done	by	the	transaction	becomes	permanent.

	Other	users	can	see	changes	in	data	made	by	the	transaction.

	Any	locks	acquired	by	the	transaction	are	released.

A	COMMIT	statement	has	the	following	syntax:
COMMIT	[WORK];

The	word	WORK	is	optional	and	is	used	to	improve	readability.	Until	a	transaction	is
committed,	only	the	user	executing	that	transaction	can	see	changes	in	the	data	made	by
his	or	her	session.

Suppose	User	A	issues	the	following	command	on	a	student	table	that	exists	in
another	schema	but	has	a	public	synonym	of	student:

For	Example		ch03_8a.sql
Click	here	to	view	code	image

BEGIN

INSERT	INTO	student

		(student_id,	last_name,	zip,	registration_date,

			created_by,	created_date,	modified_by,

			modified_date

)

		VALUES	(student_id_seq.nextval,	‘Tashi’,	10015,

										‘01-JAN-99’,	‘STUDENTA’,	‘01-JAN-99’,

										‘STUDENTA’,	‘01-JAN-99’

);

END;

Then	User	B	enters	the	following	command	to	query	the	table	known	by	its	public
synonym	student,	while	logged	on	to	his	session.

SELECT	*

FROM	student

WHERE	last_name	=	‘Tashi’;

Then	User	A	issues	the	following	command:
COMMIT;

Now	if	User	B	enters	the	same	query	again,	he	will	not	see	the	same	results.

In	this	example,	there	are	two	sessions:	User	A	and	User	B.	User	A	inserts	a	record	into
the	student	table.	User	B	queries	the	student	table,	but	does	not	get	the	record	that
was	inserted	by	User	A.	User	B	cannot	see	the	information	because	User	A	has	not
committed	the	work.	When	User	A	commits	the	transaction,	User	B,	upon	resubmitting
the	query,	sees	the	records	inserted	by	User	A.

ROLLBACK

When	a	ROLLBACK	statement	is	issued	to	the	database,	the	transaction	has	ended,	and	the
following	results	are	true:

	All	work	done	by	the	transaction	is	undone,	as	if	it	hadn’t	been	issued.

	Any	locks	acquired	by	the	transaction	are	released.

A	ROLLBACK	statement	has	the	following	syntax:
ROLLBACK	[WORK];

The	WORK	keyword	is	optional	and	provides	for	increased	readability.

SAVEPOINT

The	ROLLBACK	statement	undoes	all	work	done	by	the	user	in	a	specific	transaction.	With
the	SAVEPOINT	command,	however,	only	part	of	the	transaction	can	be	undone.	A
SAVEPOINT	command	has	the	following	syntax:

SAVEPOINT	name;

The	word	name	is	the	SAVEPOINT	statement’s	name.	Once	a	SAVEPOINT	is	defined,
the	program	can	roll	back	to	that	SAVEPOINT.	A	ROLLBACK	statement,	then,	has	the
following	syntax:
Click	here	to	view	code	image

ROLLBACK	[WORK]	to	SAVEPOINT	name;

When	a	ROLLBACK	to	SAVEPOINT	statement	is	issued	to	the	database,	the	following
results	are	true:

	Any	work	done	since	the	SAVEPOINT	is	undone.	The	SAVEPOINT	remains	active,
however,	until	a	full	COMMIT	or	ROLLBACK	is	issued.	It	can	be	rolled	back	again,	if
desired.

	Any	locks	and	resources	acquired	by	the	SQL	statements	since	the	SAVEPOINT

will	be	released.

	The	transaction	is	not	finished,	because	SQL	statements	are	still	pending.

Putting	Together	DML	and	Transaction	Control
This	section	combines	all	the	elements	of	transaction	control	that	have	been	covered	in
this	chapter.	The	following	piece	of	code	is	an	example	of	a	PL/SQL	block	with	three
SAVEPOINTs.

For	Example		ch03_9a.sql
Click	here	to	view	code	image

BEGIN

		INSERT	INTO	student

				(student_id,	Last_name,	zip,	registration_date,

						created_by,	created_date,	modified_by,

						modified_date

)

				VALUES	(student_id_seq.nextval,	‘Tashi’,	10015,

													‘01-JAN-99’,	‘STUDENTA’,	‘01-JAN-99’,

													‘STUDENTA’,‘01-JAN-99’

);

		SAVEPOINT	A;

		INSERT	INTO	student

				(student_id,	Last_name,	zip,	registration_date,

						created_by,	created_date,	modified_by,

						modified_date

)

				VALUES	(student_id_seq.nextval,	‘Sonam’,	10015,

												‘01-JAN-99’,	‘STUDENTB’,‘01-JAN-99’,

												‘STUDENTB’,	‘01-JAN-99’

);

		SAVEPOINT	B;

		INSERT	INTO	student

			(student_id,	Last_name,	zip,	registration_date,

					created_by,	created_date,	modified_by,

					modified_date

)

			VALUES	(student_id_seq.nextval,	‘Norbu’,	10015,

											‘01-JAN-99’,	‘STUDENTB’,	‘01-JAN-99’,

											‘STUDENTB’,	‘01-JAN-99’

);

		SAVEPOINT	C;

		ROLLBACK	TO	B;

END;

If	you	were	to	run	the	following	SELECT	statement	immediately	after	running	the
preceding	example,	you	would	not	be	able	to	see	any	data	because	the	ROLLBACK	to
(SAVEPOINT)	B	has	undone	the	last	insert	statement	where	the	student	Norbu	was
inserted.

SELECT	*

FROM	student

WHERE	last_name	=	‘Norbu’;

The	result	would	be	“no	rows	selected.”

Three	students	were	inserted	in	this	PL/SQL	block:	first	Tashi	in	SAVEPOINT	A,	then
Sonam	in	SAVEPOINT	B,	and	finally	Norbu	in	SAVEPOINT	C.	When	the	command	to
roll	back	to	B	was	issued,	the	insert	of	Norbu	was	undone.

If	the	following	command	was	entered	after	the	script	ch03_9a.sql,	then	the	insert
in	SAVEPOINT	B	would	be	undone—that	is,	the	insert	of	Sonam:

ROLLBACK	to	SAVEPOINT	A;

Tashi	was	the	only	student	that	was	successfully	entered	into	the	database.	The
ROLLBACK	to	SAVEPOINT	A	undid	the	insert	statements	for	Norbu	and	Sonam.

By	the	Way

SAVEPOINT	is	often	used	before	a	complicated	section	of	the	transaction.	If
this	part	of	the	transaction	fails,	it	can	be	rolled	back,	allowing	the	earlier	part
to	continue.

Did	You	Know?

It	is	important	to	note	the	distinction	between	transactions	and	PL/SQL
blocks.	When	a	block	starts,	it	does	not	mean	that	the	transaction	starts.
Likewise,	the	start	of	the	transaction	need	not	coincide	with	the	start	of	a
block.

Here	is	an	example	of	a	single	PL/SQL	block	with	multiple	transactions.

For	Example		ch03_10a.sql
Click	here	to	view	code	image

DECLARE

			v_Counter	NUMBER;

	BEGIN

			v_counter	:=	0;

			FOR	i	IN	1..100

			LOOP

					v_counter	:=	v_counter	+	1;

					IF	v_counter	=	10

					THEN

							COMMIT;

							v_counter	:=	0;

					END	IF;

			END	LOOP;

	END;

In	this	example,	as	soon	as	the	value	of	v_counter	becomes	equal	to	10,	the	work	is
committed.	Thus	there	will	be	a	total	of	10	transactions	contained	in	this	one	PL/SQL
block.

www.allitebooks.com

http://www.allitebooks.org

Summary
In	this	chapter,	you	learned	how	to	make	use	of	variables	and	the	various	ways	to	populate
variables.	Use	of	DML	(Data	Manipulation	Language)	within	a	PL/SQL	block	was
illustrated	in	examples	with	insert	statements.	These	examples	also	made	use	of	sequences
to	generate	unique	numbers.

The	last	section	of	the	chapter	covered	transactional	control	in	PL/SQL	by	explaining
what	it	means	to	commit	data	as	well	as	how	SAVEPOINTs	are	used.	The	final	examples
demonstrated	how	committed	data	could	be	reversed	by	using	ROLLBACKs	in	conjunction
with	SAVEPOINTs.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

4.	Conditional	Control:	IF	Statements

In	this	chapter,	you	will	learn	about

	IF	Statements

	ELSIF	Statements

	Nested	IF	Statements

In	almost	every	program	that	you	write,	you	need	to	make	decisions.	For	example,	if	it	is
the	end	of	the	fiscal	year,	bonuses	must	be	distributed	to	the	employees	based	on	their
salaries.	To	compute	employee	bonuses,	a	program	needs	to	have	a	conditional	control.	In
other	words,	it	needs	to	employ	a	selection	structure.

Conditional	control	allows	you	to	control	the	flow	of	the	execution	of	the	program
based	on	a	condition.	In	programming	terms,	it	means	that	the	statements	in	the	program
are	not	executed	sequentially.	Rather,	one	group	of	statements	or	another	will	be	executed
depending	on	how	the	condition	is	evaluated.

In	PL/SQL,	there	are	three	types	of	conditional	control:	IF,	ELSIF,	and	CASE
statements.	In	this	chapter,	you	will	explore	two	types	of	conditional	control—IF	and
ELSIF—and	learn	how	these	types	can	be	nested	inside	of	each	other.	CASE	statements
are	discussed	in	Chapter	5.

Lab	4.1:	IF	Statements

After	this	lab,	you	will	be	able	to

	Use	IF-THEN	Statements

	Use	IF-THEN-ELSE	Statements

An	IF	statement	has	two	forms:	IF-THEN	and	IF-THEN-ELSE.	An	IF-THEN	statement
allows	you	to	specify	only	one	group	of	actions	to	take.	In	other	words,	this	group	of
actions	is	taken	only	when	a	condition	evaluates	to	TRUE.	An	IF-THEN-ELSE	statement
allows	you	to	specify	two	groups	of	actions,	and	the	second	group	of	actions	is	taken	when
a	condition	evaluates	to	FALSE	or	NULL.

IF-THEN	Statements
An	IF-THEN	statement	is	the	most	basic	kind	of	a	conditional	control	and	has	the
structure	shown	in	Listing	4.1.

Listing	4.1	IF-THEN	Statement	Structure
IF	CONDITION

THEN

		STATEMENT	1;

		…

		STATEMENT	N;

END	IF;

The	reserved	word	IF	marks	the	beginning	of	the	IF	statement.	Statements	1	through
N	are	a	sequence	of	executable	statements	that	consist	of	one	or	more	of	the	standard
programming	structures.	The	CONDITION	between	the	keywords	IF	and	THEN
determines	whether	these	statements	are	executed.	END	IF	is	a	reserved	phrase	that
indicates	the	end	of	the	IF-THEN	construct.	This	flow	of	the	logic	is	illustrated	in	Figure
4.1.

Figure	4.1	IF-THEN	Statement

When	an	IF-THEN	statement	is	executed,	a	condition	is	evaluated	to	either	TRUE	or
FALSE.	If	the	condition	evaluates	to	TRUE,	control	passes	to	the	first	executable
statement	of	the	IF-THEN	construct.	If	the	condition	evaluates	to	FALSE,	control	passes
to	the	first	executable	statement	after	the	END	IF	statement.

Consider	the	following	example.	You	have	two	numeric	values	stored	in	the	variables
v_num1	and	v_num2.	You	need	to	arrange	these	values	so	that	the	smaller	value	is
always	stored	in	v_num1,	and	the	larger	value	is	always	stored	in	the	v_num2.

For	Example		ch04_1a.sql
Click	here	to	view	code	image

DECLARE

		v_num1	NUMBER	:=	5;

		v_num2	NUMBER	:=	3;

		v_temp	NUMBER;

BEGIN

		—	if	v_num1	is	greater	than	v_num2	rearrange	their	values

		IF	v_num1	>	v_num2

		THEN

				v_temp	:=	v_num1;

				v_num1	:=	v_num2;

				v_num2	:=	v_temp;

		END	IF;

		—	display	the	values	of	v_num1	and	v_num2

		DBMS_OUTPUT.PUT_LINE	(‘v_num1	=	‘||v_num1);

		DBMS_OUTPUT.PUT_LINE	(‘v_num2	=	‘||v_num2);

END;

In	this	example,	condition
v_num1	>	v_num2

evaluates	to	TRUE	because	5	is	greater	than	3.	Next,	the	values	are	rearranged	so	that	3	is
assigned	to	v_num1	and	5	is	assigned	to	v_num2.	This	step	is	done	with	the	help	of	the
third	variable,	v_temp,	which	is	used	for	temporary	storage.

This	example	produces	the	following	output:
v_num1	=	3

v_num2	=	5

IF-THEN-ELSE	Statement
An	IF-THEN	statement	specifies	the	sequence	of	statements	to	execute	only	if	the
condition	evaluates	to	TRUE.	When	this	condition	evaluates	to	FALSE	or	NULL,	there	is
no	special	action	to	take	except	to	proceed	with	execution	of	the	program.

An	IF-THEN-ELSE	statement	enables	you	to	specify	two	groups	of	statements.	One
group	of	statements	is	executed	when	the	condition	evaluates	to	TRUE.	Another	group	of
statements	is	executed	when	the	condition	evaluates	to	FALSE	or	NULL.	This	structure	is
shown	in	Listing	4.2.

Listing	4.2	IF-THEN-ELSE	Statement	Structure
IF	CONDITION

THEN

		STATEMENT	1;

ELSE

		STATEMENT	2;

END	IF;

STATEMENT	3;

When	CONDITION	evaluates	to	TRUE,	control	is	passed	to	STATEMENT	1;	when
CONDITION	evaluates	to	FALSE	or	NULL,	control	is	passed	to	STATEMENT	2.	After	the
IF-THEN-ELSE	construct	has	completed,	STATEMENT	3	is	executed.	This	flow	of	the
logic	is	illustrated	in	Figure	4.2.

Figure	4.2	IF-THEN-ELSE	Statement

Did	You	Know?

The	IF-THEN-ELSE	construct	should	be	used	when	trying	to	choose	between
two	mutually	exclusive	actions.	Consider	the	following	example:
Click	here	to	view	code	image

DECLARE

		v_num	NUMBER	:=	&sv_user_num;

BEGIN

		—	test	if	the	number	provided	by	the	user	is	even

		IF	MOD(v_num,2)	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	even	number’);

		ELSE

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	odd	number’);

		END	IF;

END;

For	any	given	number	of	DBMS_OUTPUT.PUT_LINE	statements,	only	one
is	executed.	Hence,	the	IF-THEN-ELSE	construct	enables	you	to	specify	two
and	only	two	mutually	exclusive	actions.

When	run,	this	example	produces	the	following	output:
24	is	even	number

Null	Condition

In	some	cases,	a	condition	used	in	an	IF	statement	may	evaluate	to	NULL	instead	of
TRUE	or	FALSE.	For	the	IF-THEN	construct,	the	statements	associated	with	the	construct
will	not	be	executed	if	an	associated	condition	evaluates	to	NULL.	Instead,	control	of	the
execution	will	pass	to	the	first	executable	statement	after	END	IF.	For	the	IF-THEN-
ELSE	construct,	the	statements	specified	after	the	keyword	ELSE	will	be	executed	if	an
associated	condition	evaluates	to	NULL.

For	Example		ch04_2a.sql
Click	here	to	view	code	image

DECLARE

		v_num1	NUMBER	:=	0;

		v_num2	NUMBER;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Before	IF	statement…’);

		IF	v_num1	=	v_num2

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘v_num1	=	v_num2’);

		END	IF;

		DBMS_OUTPUT.PUT_LINE	(‘After	IF	statement…’);

END;

This	example	produces	the	following	output:
Before	IF	statement…

After	IF	statement…

The	condition
v_num1	=	v_num2

evaluates	to	NULL	because	variable	v_num2	is	not	assigned	a	value;	therefore,	it	remains
NULL.	Notice	that	the	IF-THEN	construct	behaves	as	if	the	condition	evaluated	to
FALSE.	In	other	words,	the	DBMS_OUTPUT.PUT_LINE	statement	associated	with	the
IF-THEN	construct	does	not	execute.

Next,	consider	a	similar	example	that	employs	the	IF-THEN-ELSE	construct	(the
newly	added	statements	are	shown	in	bold).

For	Example		ch04_2b.sql
Click	here	to	view	code	image

DECLARE

		v_num1	NUMBER	:=	0;

		v_num2	NUMBER;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Before	IF	statement…’);

		IF	v_num1	=	v_num2

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘v_num1	=	v_num2’);

		ELSE

				DBMS_OUTPUT.PUT_LINE	(‘v_num1	!=	v_num2’);

		END	IF;

		DBMS_OUTPUT.PUT_LINE	(‘After	IF	statement…’);

END;

This	example	produces	the	following	output:
Before	IF	statement…

v_num1	!=	v_num2

After	IF	statement…

Similarly,	the	condition
v_num1	=	v_num2

evaluates	to	NULL,	and	the	ELSE	portion	of	the	IF-THEN-ELSE	construct	is	executed.

Lab	4.2:	ELSIF	Statements

After	this	lab,	you	will	be	able	to

	Use	the	ELSIF	Statement

An	ELSIF	statement	has	the	structure	shown	in	Listing	4.3.

Listing	4.3	ELSIF	Statement	Structure
IF	CONDITION	1

THEN

		STATEMENT	1;

ELSIF	CONDITION	2

THEN

		STATEMENT	2;

ELSIF	CONDITION	3

THEN

		STATEMENT	3;

…

ELSE

		STATEMENT	N;

END	IF;

The	reserved	word	IF	marks	the	beginning	of	an	ELSIF	construct.	The	words
CONDITION	1	through	CONDITION	N	are	a	sequence	of	the	conditions	that	evaluate	to
TRUE	or	FALSE.	These	conditions	are	mutually	exclusive.	In	other	words,	if
CONDITION	1	evaluates	to	TRUE,	STATEMENT	1	is	executed	and	control	passes	to	the
first	executable	statement	after	the	reserved	phrase	END	IF.	The	rest	of	the	ELSIF
construct	is	ignored.	When	CONDITION	1	evaluates	to	FALSE,	control	passes	to	the
ELSIF	part	and	CONDITION	2	is	evaluated,	and	so	forth.	If	none	of	the	specified
conditions	evaluates	as	TRUE,	control	passes	to	the	ELSE	part	of	the	ELSIF	construct.
An	ELSIF	statement	can	contain	any	number	of	ELSIF	clauses.	This	flow	of	the	logic	is
illustrated	in	Figure	4.3.

Figure	4.3	ELSIF	Statement

Figure	4.3	shows	that	if	condition	1	evaluates	to	TRUE,	statement	1	is	executed	and
control	passes	to	the	first	statement	after	END	IF.	If	condition	1	evaluates	to	FALSE,
control	passes	to	condition	2.	If	condition	2	evaluates	to	TRUE,	statement	2	is	executed.
Otherwise,	control	passes	to	the	statement	following	END	IF,	and	so	forth.	Consider	the
following	example.

For	Example		ch04_3a.sql
Click	here	to	view	code	image

DECLARE

		v_num	NUMBER	:=	&sv_num;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Before	IF	statement…’);

		IF	v_num	<	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	a	negative	number’);

		ELSIF	v_num	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	equal	to	zero’);

		ELSE

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	a	positive	number’);

		END	IF;

		DBMS_OUTPUT.PUT_LINE	(‘After	IF	statement…’);

END;

The	value	of	the	variable	v_num	is	provided	at	run	time	and	evaluated	with	the	help	of
the	ELSIF	statement.	If	the	value	of	v_num	is	less	than	0,	the	first
DBMS_OUTPUT.PUT_LINE	statement	executes,	and	the	ELSIF	construct	terminates.	If
the	value	of	v_num	is	greater	than	0,	both	conditions

v_num	<	0

and
v_num	=	0

evaluate	to	FALSE,	and	the	ELSE	part	of	the	ELSIF	construct	executes.

Assume	that	the	value	of	the	variable	v_num	equals	5	at	run	time.	This	example
produces	the	following	output:

Before	IF	statement…

5	is	a	positive	number

After	IF	statement…

Did	You	Know?

For	an	ELSIF	statement:

	IF	must	always	be	matched	with	END	IF.

	There	must	be	a	space	between	END	and	IF.	When	the	space	is	omitted,	the
compiler	produces	the	following	error:

Click	here	to	view	code	image

ORA-06550:	line	13,	column	4:

PLS-00103:	Encountered	the	symbol	“;”	when	expecting	one	of	the

following:	if

As	you	can	see,	this	error	message	is	not	very	clear,	and	it	can	take	you	some
time	to	correct	it,	especially	if	you	have	not	encountered	it	before.

	There	is	no	second	“E”	in	ELSIF.

	Conditions	of	an	ELSIF	statement	must	be	mutually	exclusive.	These
conditions	are	evaluated	in	sequential	order,	from	the	first	to	the	last.	Once	a
condition	evaluates	to	TRUE,	the	remaining	conditions	of	the	ELSIF
statement	are	not	evaluated	at	all.	Consider	this	example	of	an	ELSIF
construct:

Click	here	to	view	code	image
IF	v_num	>=	0

THEN

		DBMS_OUTPUT.PUT_LINE	(‘v_num	is	greater	than	0’);

ELSIF	v_num	=<	10

THEN

		DBMS_OUTPUT.PUT_LINE	(‘v_num	is	less	than	10’);

ELSE

		DBMS_OUTPUT.PUT_LINE	(‘v_num	is	less	than	?	or	greater	than	?’);

END	IF;

Assume	that	the	value	of	v_num	is	equal	to	5.	Both	conditions	of	the	ELSIF
statement	can	evaluate	to	TRUE	because	5	is	greater	than	0,	and	5	is	less	than
10.	However,	once	the	first	condition,	v_num	>=	0,	evaluates	to	TRUE,	the
rest	of	the	ELSIF	construct	is	ignored.

For	any	value	of	v_num	that	is	greater	than	or	equal	to	0	and	less	than	or
equal	to	10,	these	conditions	are	not	mutually	exclusive.	Therefore,	the
DBMS_OUTPUT.PUT_LINE	statement	associated	with	the	ELSIF	clause
will	not	execute	for	any	such	value	of	v_num.	For	the	second	condition,
v_num	<=	10,	to	evaluate	as	TRUE,	the	value	of	v_num	must	be	less	than	0.

How	would	you	rewrite	this	ELSIF	construct	to	capture	any	value	of
v_num	between	0	and	10	and	display	it	on	the	screen	with	a	single	condition?

When	using	an	ELSIF	construct,	it	is	not	necessary	to	specify	which	action	should	be
taken	if	none	of	the	conditions	evaluates	to	TRUE.	In	other	words,	an	ELSE	clause	is	not
required	in	the	ELSIF	construct.	Consider	the	following	example:

www.allitebooks.com

http://www.allitebooks.org

For	Example		ch04_3b.sql
Click	here	to	view	code	image

DECLARE

		v_num	NUMBER	:=	&sv_num;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Before	IF	statement…’);

		IF	v_num	<	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	a	negative	number’);

		ELSIF	v_num	>	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	a	positive	number’);

		END	IF;

		DBMS_OUTPUT.PUT_LINE	(‘After	IF	statement…’);

END;

As	you	can	see,	there	is	no	action	specified	when	v_num	is	equal	to	0.	If	the	value	of
v_num	is	equal	to	0,	both	conditions	will	evaluate	to	FALSE,	and	the	ELSIF	statement
will	not	execute	at	all.	When	a	value	of	zero	is	specified	for	v_num,	this	example
produces	the	following	output:

Before	IF	statement…

After	IF	statement…

Did	You	Know?

You	probably	noticed	that	for	all	IF	statement	examples,	the	reserved	words
IF,	ELSIF,	ELSE,	and	END	IF	are	entered	on	a	separate	line	and	aligned
with	the	word	IF.	In	addition,	all	executable	statements	in	the	IF	construct
are	indented.	The	format	of	the	IF	construct	makes	no	difference	to	the
compiler,	but	the	meaning	of	the	formatted	IF	construct	becomes	obvious	to
us	with	this	style.

The	IF-THEN-ELSE	statement
Click	here	to	view	code	image

IF	x	=	y	THEN	v_txt	:=	‘YES’;	ELSE	v_txt	:=	‘NO’;	END	IF;

is	equivalent	to
IF	x	=	y

THEN

		v_txt	:=	‘YES’;

ELSE

		v_txt	:=	‘NO’;

END	IF;

The	formatted	version	of	the	IF	construct	is	easier	to	read	and	understand.

Lab	4.3:	Nested	IF	Statements

After	this	lab,	you	will	be	able	to

	Use	Nested	IF	Statements

You	have	encountered	different	types	of	conditional	controls:	IF-THEN	statement,	IF-
THEN-ELSE	statement,	and	ELSIF	statement.	These	types	of	conditional	controls	can	be
nested	inside	of	one	another—for	example,	an	IF	statement	can	be	nested	inside	an
ELSIF,	and	vice	versa.	Consider	the	following	example:

For	Example		ch04_4a.sql
Click	here	to	view	code	image

DECLARE

		v_num1		NUMBER	:=	&sv_num1;

		v_num2		NUMBER	:=	&sv_num2;

		v_total	NUMBER;

BEGIN

		IF	v_num1	>	v_num2

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘IF	part	of	the	outer	IF’);

				v_total	:=	v_num1	-	v_num2;

		ELSE

				DBMS_OUTPUT.PUT_LINE	(‘ELSE	part	of	the	outer	IF’);

				v_total	:=	v_num1	+	v_num2;

				IF	v_total	<	0

				THEN

						DBMS_OUTPUT.PUT_LINE	(‘Inner	IF’);

						v_total	:=	v_total	*	(-1);

				END	IF;

		END	IF;

		DBMS_OUTPUT.PUT_LINE	(‘v_total	=	‘||v_total);

END;

The	IF-THEN-ELSE	statement	is	called	an	outer	IF	statement	because	it
encompasses	the	IF-THEN	statement	(shown	in	bold).	The	IF-THEN	statement	is	called
an	inner	IF	statement	because	it	is	enclosed	by	the	body	of	the	IF-THEN-ELSE
statement.

Assume	that	the	values	for	v_num1	and	v_num2	are	–4	and	3,	respectively.	First,	the
condition

v_num1	>	v_num2

of	the	outer	IF	statement	is	evaluated.	Because	–4	is	not	greater	than	3,	the	ELSE	part	of
the	outer	IF	statement	is	executed.	As	a	result,	the	message

ELSE	part	of	the	outer	IF

is	displayed,	and	the	value	of	v_total	is	calculated.	Next,	the	condition
v_total	<	0

of	the	inner	IF	statement	is	evaluated.	Because	that	value	of	v_total	is	equal	–l,	the

condition	yields	TRUE,	and	the	message
Inner	IF

is	displayed.	Next,	the	value	of	v_total	is	calculated	again.	This	logic	is	demonstrated
by	the	output	produced	by	the	example:

ELSE	part	of	the	outer	IF

Inner	IF

v_total	=	1

Logical	Operators
So	far	in	this	chapter,	you	have	seen	examples	of	different	IF	statements.	All	of	these
examples	used	test	operators,	such	as	>,	<,	and	=,	to	evaluate	a	condition.	Logical
operators	can	be	used	to	evaluate	a	condition	as	well.	In	addition,	they	allow	a
programmer	to	combine	multiple	conditions	into	a	single	condition	if	there	is	such	a	need.

For	Example		ch04_5a.sql
Click	here	to	view	code	image

DECLARE

		v_letter	CHAR(1)	:=	‘&sv_letter’;

BEGIN

		IF	(v_letter	>=	‘A’	AND	v_letter	<=	‘Z’)	OR

					(v_letter	>=	‘a’	AND	v_letter	<=	‘z’)

		THEN

					DBMS_OUTPUT.PUT_LINE	(‘This	is	a	letter’);

		ELSE

					DBMS_OUTPUT.PUT_LINE	(‘This	is	not	a	letter’);

					IF	v_letter	BETWEEN	‘0’	and	‘9’

					THEN

							DBMS_OUTPUT.PUT_LINE	(‘This	is	a	number’);

					ELSE

							DBMS_OUTPUT.PUT_LINE	(‘This	is	not	a	number’);

					END	IF;

		END	IF;

END;

In	this	example,	the	condition
Click	here	to	view	code	image

(v_letter	>=	‘A’	AND	v_letter	<=	‘Z’)	OR

(v_letter	>=	‘a’	AND	v_letter	<=	‘z’)

uses	logical	operators	AND	and	OR.	Two	conditions
Click	here	to	view	code	image

(v_letter	>=	‘A’	AND	v_letter	<=	‘Z’)

and
Click	here	to	view	code	image

(v_letter	>=	‘a’	AND	v_letter	<=	‘z’)

are	combined	into	one	with	the	help	of	the	OR	operator.	Notice	the	purposes	of	the
parentheses.	In	this	example,	they	are	used	to	improve	readability	only,	because	the
operator	AND	takes	precedence	over	the	operator	OR.

When	the	symbol	“?”	is	entered	at	run	time,	this	example	produces	the	following
output:

This	is	not	a	letter

This	is	not	a	number

Did	You	Know?

You	can	nest	IF	statements	to	any	depth	level	up	to	maximum	length	of	a
PL/SQL	block,	and	blocks	themselves	may	be	nested	255	levels	deep.
Consider	the	following	example,	where	IF	statements	are	nested	inside	each
other	four	levels	deep:
Click	here	to	view	code	image

DECLARE

		v_var1	PLS_INTEGER	:=	100;

		v_var2	PLS_INTEGER	:=	200;

		v_var3	PLS_INTEGER	:=	300;

		v_var4	PLS_INTEGER	:=	400;

BEGIN

		IF	v_var1	>=	100

		THEN

				IF	v_var2	>=	200

				THEN

						IF	v_var3	>=	300

						THEN

								IF	v_var4	>=	400

								THEN

										DBMS_OUTPUT.PUT_LINE

												(‘v_var1	=	‘||v_var1||’,	v_var2	=	‘||v_var2||

													’,	v_var3	=	‘||v_var3||’,	v_var4	=	‘||v_var4);

								END	IF;

						END	IF;

				END	IF;

		END	IF;

END;

While	this	script	is	very	simple	and	does	not	accomplish	much,	such	deep	nesting	of	IF
statements	is	much	more	difficult	to	follow	and	may	become	very	complex	very	quickly
when	implementing	complex	business	solutions.

In	this	example,	the	four	nested	IF	statements	could	be	restructured	as	a	single	IF
statement	by	combining	these	conditions	with	the	AND	operator:
Click	here	to	view	code	image

IF	v_var1	>=	100	AND	v_var2	>=	200	and	v_var3	>=	300	AND	v_var4	>=	400

THEN

		…

END	IF;

Summary
In	the	chapter,	you	explored	different	types	of	IF	statements	and	saw	how	they	can	be
nested	inside	one	another.	You	also	learned	how	to	employ	logical	operators	when
combining	multiple	distinct	conditions	into	one	unified	condition	for	the	purpose	of
evaluation.	Conditional	control	structures	are	supported	by	almost	every	programming
language;	while	the	syntax	may	vary,	the	manner	in	which	they	are	used	remains
unchanged.

In	the	next	chapter,	you	will	continue	to	learn	about	conditional	control	via	CASE
statements	and	CASE	expressions.	In	addition,	you	will	learn	about	the	NULLIF	and
COALESCE	functions	that	are	supported	by	the	SQL	and	PL/SQL	languages.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

5.	Conditional	Control:	CASE	Statements

In	this	chapter,	you	will	learn	about

	CASE	Statements

	CASE	Expressions

	NULLIF	and	COALESCE	Functions

In	the	previous	chapter,	you	explored	the	concept	of	conditional	control	via	IF	and
ELSIF	statements.	In	this	chapter,	you	will	continue	this	exploration	by	examining
different	types	of	CASE	statements	and	expressions.	You	will	also	learn	how	to	use
NULLIF	and	COALESCE	functions,	which	are	considered	extensions	of	CASE.

Lab	5.1:	CASE	Statements

After	this	lab,	you	will	be	able	to

	Use	CASE	Statements

	Use	Searched	CASE	Statements

	Use	Nested	CASE	Statements

A	CASE	statement	has	two	forms:	CASE	and	searched	CASE.	A	CASE	statement	allows
you	to	specify	a	selector	that	determines	which	group	of	actions	to	take.	A	searched	CASE
statement	does	not	have	a	selector;	rather,	it	has	search	conditions	that	are	evaluated	to
determine	which	group	of	actions	to	take.

CASE	Statements
A	CASE	statement	has	structure	shown	in	Listing	5.1.

Listing	5.1	CASE	Statement	Structure
Click	here	to	view	code	image

CASE	SELECTOR

		WHEN	EXPRESSION	1	THEN	STATEMENT	1;

		WHEN	EXPRESSION	2	THEN	STATEMENT	2;

		…

		WHEN	EXPRESSION	N	THEN	STATEMENT	N;

		ELSE	STATEMENT	N+1;

END	CASE;

The	reserved	word	CASE	marks	the	beginning	of	the	CASE	statement.	A	selector	is	a
value	that	determines	which	WHEN	clause	should	be	executed.	Each	WHEN	clause	contains
an	EXPRESSION	and	one	or	more	executable	statements	associated	with	it.	The	ELSE
clause	is	optional	and	works	similar	to	the	ELSE	clause	used	in	the	IF-THEN-ELSE
statement.	END	CASE	is	a	reserved	phrase	that	indicates	the	end	of	the	CASE	statement.

This	flow	of	the	logic	from	the	preceding	structure	of	the	CASE	statement	is	illustrated	in
Figure	5.1.

Figure	5.1	CASE	Statement

Note	that	the	selector	is	evaluated	only	once,	and	the	WHEN	clauses	are	evaluated
sequentially.	The	value	of	an	expression	is	compared	to	the	value	of	the	selector.	If	they
are	equal,	the	statement	associated	with	a	particular	WHEN	clause	is	executed,	and	any
subsequent	WHEN	clauses	are	not	evaluated.	If	no	expression	matches	the	value	of	the
selector,	the	ELSE	clause	is	executed.

Recall	the	example	of	the	IF-THEN-ELSE	statement	from	Chapter	4,	which	is	listed
here	for	reference.

For	Example		ch05_1a.sql
Click	here	to	view	code	image

DECLARE

		v_num	NUMBER	:=	&sv_user_num;

BEGIN

		—	test	if	the	number	provided	by	the	user	is	even

		IF	MOD(v_num,2)	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	even	number’);

		ELSE

				DBMS_OUTPUT.PUT_LINE	(v_num||’	is	odd	number’);

		END	IF;

END;

Now	consider	a	new	version	of	the	same	example	that	uses	the	CASE	statement	instead
of	the	IF-THEN-ELSE	statement.

For	Example		ch05_1b.sql
Click	here	to	view	code	image

DECLARE

		v_num						NUMBER	:=	&sv_user_num;

		v_num_flag	NUMBER;

BEGIN

		v_num_flag	:=	MOD(v_num,2);

		—	test	if	the	number	provided	by	the	user	is	even

		CASE	v_num_flag

				WHEN	0

				THEN

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	even	number’);

				ELSE

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	odd	number’);

		END	CASE;

END;

In	this	example,	a	new	variable,	v_num_flag,	is	used	as	a	selector	for	the	CASE
statement.	If	the	MOD	function	returns	0,	then	the	number	is	even;	otherwise,	it	is	odd.	If
v_num	is	assigned	the	value	of	7	at	the	run	time,	this	example	produces	the	following
output:

7	is	odd	number

Searched	CASE	Statements
A	searched	CASE	statement	has	search	conditions	that	yield	Boolean	values:	TRUE,
FALSE,	or	NULL.	When	a	particular	search	condition	evaluates	to	TRUE,	the	group	of
statements	associated	with	this	condition	is	executed.	This	structure	is	shown	in	Listing
5.2.

Listing	5.2	Searched	CASE	Statement	Structure
Click	here	to	view	code	image

CASE

		WHEN	SEARCH	CONDITION	1	THEN	STATEMENT	1;

		WHEN	SEARCH	CONDITION	2	THEN	STATEMENT	2;

		…

		WHEN	SEARCH	CONDITION	N	THEN	STATEMENT	N;

		ELSE	STATEMENT	N+1;

END	CASE;

When	a	search	condition	evaluates	to	TRUE,	control	passes	to	the	statement	associated
with	it.	If	no	search	condition	evaluates	to	TRUE,	then	statements	associated	with	the
ELSE	clause	are	executed.	Note	that	the	ELSE	clause	is	optional.	This	flow	of	logic	from
the	preceding	structure	of	the	searched	CASE	statement	is	illustrated	in	Figure	5.2.

Figure	5.2	Searched	CASE	Statement

Consider	the	modified	version	of	the	ch05_1b.sql	example,	which	you	saw	earlier
in	this	lab.	The	changes	are	highlighted	in	bold.

For	Example		ch05_1c.sql
Click	here	to	view	code	image

DECLARE

		v_num	NUMBER	:=	&sv_user_num;

BEGIN

		—	test	if	the	number	provided	by	the	user	is	even

		CASE

				WHEN	MOD(v_num,2)	=	0

				THEN

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	even	number’);

				ELSE

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	odd	number’);

		END	CASE;

END;

In	the	previous	example,	the	variable	v_num_flag	was	used	as	a	selector,	and	the
result	of	the	MOD	function	was	assigned	to	it.	The	value	of	the	selector	was	then	compared
to	the	value	of	the	expression.

This	example	uses	a	searched	CASE	statement,	so	there	is	no	selector	present.	The
variable	v_num	is	used	as	part	of	the	search	conditions,	so	there	is	no	need	to	declare
variable	v_num_flag.	This	example	produces	the	same	output	when	the	same	value	is
provided	for	the	v_num:

7	is	odd	number

Differences	between	CASE	and	Searched	CASE	Statements

It	is	important	to	note	the	differences	between	the	CASE	and	searched	CASE	statements.
You	have	seen	that	the	searched	CASE	statement	does	not	have	a	selector.	In	addition,	its
WHEN	clauses	contain	search	conditions	that	yield	a	Boolean	value	similar	to	the	IF
statement,	not	expressions	that	can	yield	a	value	of	any	type	except	a	PL/SQL	record,	an
index-by-table,	a	nested	table,	a	vararray,	BLOB,	BFILE,	or	an	object	type.	You	will
encounter	some	of	these	types	in	the	future	chapters.

Consider	the	two	code	fragments	shown	in	Table	5.1,	which	are	based	on	the	examples
you	saw	earlier	in	this	chapter.

Table	5.1	CASE	Statement	versus	Searched	CASE	Statement

In	the	code	fragment	on	the	left	(CASE	statement),	v_num_flag	is	the	selector.	It	is	a
PL/SQL	variable	that	has	been	defined	as	a	NUMBER.	Because	the	value	of	the	expression
is	compared	to	the	value	of	the	selector,	the	expression	must	return	a	similar	data	type.
The	expression	‘0’	contains	a	number,	so	its	data	type	is	also	numeric.

In	the	code	fragment	on	the	right	(searched	CASE	statement),	there	is	no	need	for	the
selector,	as	it	has	been	replaced	by	the	searched	expression

MOD(v_num,	2)	=	0

This	expression	evaluates	to	TRUE	or	FALSE	just	like	conditions	of	an	IF	statement.

Next,	consider	an	example	of	the	CASE	statement	that	generates	a	syntax	error	because
the	data	type	returned	by	the	expressions	does	not	match	the	data	type	assigned	to	the
selector.

For	Example		ch05_2a.sql
Click	here	to	view	code	image

DECLARE

		v_num						NUMBER	:=	&sv_num;

		v_num_flag	NUMBER;

BEGIN

		CASE	v_num_flag

				WHEN	MOD(v_num,2)	=	0

				THEN

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	even	number’);

				ELSE

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	odd	number’);

		END	CASE;

END;

In	this	example,	the	variable	v_num_flag	has	been	defined	as	a	NUMBER.	However,
the	result	of	the	expression	evaluated	by	the	WHEN	clause	yields	a	Boolean	data	type.	As
a	result,	this	example	produces	the	following	syntax	error:
Click	here	to	view	code	image

ORA-06550:	line	5,	column	9:

PLS-00615:	type	mismatch	found	at	‘V_NUM_FLAG’	between	CASE	operand	and

WHEN	operands

ORA-06550:	line	5,	column	4:

PL/SQL:	Statement	ignored

Now	consider	a	modified	version	of	this	example	where	v_num_flag	variable	has
been	declared	as	a	Boolean	(affected	statements	are	shown	in	bold).

For	Example		ch05_2b.sql
Click	here	to	view	code	image

DECLARE

		v_num						NUMBER	:=	&sv_num;

		v_num_flag	Boolean;

BEGIN

		CASE	v_num_flag

				WHEN	MOD(v_num,2)	=	0

				THEN

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	even	number’);

				ELSE

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	odd	number’);

		END	CASE;

END;

If	v_num	is	assigned	the	value	of	7	again,	this	example	produces	the	following	output:
7	is	odd	number

At	first	glance	this	seems	to	be	the	output	that	you	would	expect.	However,	consider	the
output	produced	by	this	example	when	the	value	of	4	is	assigned	to	the	variable	v_num:

4	is	odd	number

Watch	Out!

The	second	run	of	the	example	produced	an	incorrect	output	even	though	it
did	not	generate	any	syntax	errors.	When	the	value	of	4	is	assigned	to	the
variable	v_num,	the	expression	MOD(v_num,2)	=	0	yields	TRUE,	and	it
is	compared	to	the	selector	v_num_flag.	However,	the	v_num_flag	has
not	been	initialized	to	any	value,	so	it	remains	NULL.	Because	NULL	does	not
equal	TRUE,	the	statement	associated	with	the	ELSE	clause	is	executed.	To
produce	the	correct	output,	the	v_num_flag	variable	must	be	initialized	to
TRUE.

You	learned	earlier	that	the	expressions	in	the	CASE	statements	and	searched	conditions
in	the	searched	CASE	statements	are	evaluated	sequentially.	Also,	as	soon	as	the
expression	or	searched	condition	evaluates	to	the	desired	result,	the	rest	of	the	expressions
and	searched	conditions	are	ignored.	Essentially,	at	this	point,	the	executable	statements
associated	with	that	expression	or	searched	condition	are	executed.	Once	this	execution
completes,	control	passes	to	the	first	executable	statement	after	the	END	CASE	clause.
This	logic	implies	that	the	order	in	which	you	list	the	expressions	and	searched	conditions
affects	the	flow	of	the	execution—a	relationship	illustrated	by	the	following	example.

For	Example		ch05_3a.sql
Click	here	to	view	code	image

DECLARE

		v_final_grade		NUMBER	:=	&sv_final_grade;

		v_letter_grade	CHAR(1);

BEGIN

		CASE

				WHEN	v_final_grade	>=	60

				THEN

						v_letter_grade	:=	‘D’;

				WHEN	v_final_grade	>=	70

				THEN

						v_letter_grade	:=	‘C’;

				WHEN	v_final_grade	>=	80

				THEN

						v_letter_grade	:=	‘B’;

				WHEN	v_final_grade	>=	90

				THEN

						v_letter_grade	:=	‘A’;

				ELSE

						v_letter_grade	:=	‘F’;

		END	CASE;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Final	grade	is:	‘||v_final_grade);

		DBMS_OUTPUT.PUT_LINE	(‘Letter	grade	is:	‘||v_letter_grade);

END;

In	this	example	of	a	searched	CASE	statement,	the	value	of	the	letter	grade	is	assigned
based	on	the	numeric	grade	provided	by	the	user	at	run	time.	When	a	value	of	67	is
provided	at	run	time	for	the	variable	v_final_grade,	this	example	produces	the
following	output:

Final	grade	is:	67

Letter	grade	is:	D

At	first	sight,	this	is	behavior	that	you	expect.	Next,	consider	the	output	produced	by
this	example	when	94	is	assigned	to	the	variable	v_final_grade:

Final	grade	is:	94

Letter	grade	is:	D

In	this	run,	the	example	produced	incorrect	output.	This	error	occurred	because	the	first
searched	condition

v_final_grade	>=	60

evaluated	to	TRUE	and	‘D’	was	assigned	to	the	variable	v_letter_grade.	To	correct
this	mistake,	the	order	of	the	searched	conditions	could	be	changed	as	follows	(all	changes
are	highlighted	in	bold):

For	Example		ch05_3b.sql
Click	here	to	view	code	image

DECLARE

		v_final_grade		NUMBER	:=	&sv_final_grade;

		v_letter_grade	CHAR(1);

BEGIN

		CASE

				WHEN	v_final_grade	>=	90

				THEN

						v_letter_grade	:=	‘A’;

				WHEN	v_final_grade	>=	80

				THEN

						v_letter_grade	:=	‘B’;

				WHEN	v_final_grade	>=	70

				THEN

						v_letter_grade	:=	‘C’;

				WHEN	v_final_grade	>=	60

				THEN

						v_letter_grade	:=	‘D’;

				ELSE

						v_letter_grade	:=	‘F’;

		END	CASE;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Final	grade	is:	‘||v_final_grade);

		DBMS_OUTPUT.PUT_LINE	(‘Letter	grade	is:	‘||v_letter_grade);

END;

In	this	version	of	the	example,	the	order	of	the	searched	conditions	has	been	reversed.
As	a	result,	it	produces	the	correct	output	in	both	cases.

Final	grade	is:	67

Letter	grade	is:	D

Final	grade	is:	94

Letter	grade	is:	A

Lab	5.2:	CASE	Expressions

After	this	lab,	you	will	be	able	to

	Use	CASE	Expressions

In	Chapter	2,	you	encountered	various	PL/SQL	expressions.	Recall	that	the	result	of	an
expression	yields	a	single	value	that	is	assigned	to	a	variable.	In	a	similar	manner,	a	CASE
expression	evaluates	to	a	single	value	that	may	be	assigned	to	a	variable.

A	CASE	expression	has	a	structure	almost	identical	to	a	CASE	statement.	Thus,	it	also
has	two	forms:	CASE	and	searched	CASE.	Consider	an	example	of	a	CASE	statement	used
in	the	first	lab	in	this	chapter:

For	Example		ch05_1d.sql
Click	here	to	view	code	image

DECLARE

		v_num						NUMBER	:=	&sv_user_num;

		v_num_flag	NUMBER;

BEGIN

		v_num_flag	:=	MOD(v_num,2);

		—	test	if	the	number	provided	by	the	user	is	even

		CASE	v_num_flag

				WHEN	0

				THEN

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	even	number’);

				ELSE

						DBMS_OUTPUT.PUT_LINE	(v_num||’	is	odd	number’);

		END	CASE;

END;

Now	consider	the	new	version	of	the	same	example,	which	uses	a	CASE	expression
instead	of	a	CASE	statement.	Changes	are	shown	in	bold.

For	Example		ch05_1e.sql
Click	here	to	view	code	image

DECLARE

		v_num						NUMBER	:=	&sv_user_num;

		v_num_flag	NUMBER;

		v_result			VARCHAR2(30);

BEGIN

		v_num_flag	:=	MOD(v_num,2);

		—	test	if	the	number	provided	by	the	user	is	even

		v_result	:=	CASE	v_num_flag

																WHEN	0

																THEN

																		v_num||’	is	even	number’

																ELSE

																		v_num||’	is	odd	number’

															END;

		DBMS_OUTPUT.PUT_LINE	(v_result);

END;

In	this	example,	a	new	variable,	v_result,	is	used	to	hold	the	value	returned	by	the
CASE	expression.	If	the	variable	v_num	is	assigned	the	value	of	8,	this	example	produces
the	following	output:

8	is	even	number

It	is	important	to	note	some	syntax	differences	between	a	CASE	statement	and	a	CASE
expression.	Consider	the	code	fragments	shown	in	Table	5.2.

Table	5.2	CASE	Statement	versus	CASE	Expression

In	the	CASE	statement,	the	WHEN	and	ELSE	clauses	both	contain	a	single	executable
statement.	Each	executable	statement	is	terminated	by	a	semicolon.	In	the	CASE
expression,	the	WHEN	and	ELSE	clauses	both	contain	an	expression	that	is	not	terminated
by	a	semicolon.	One	semicolon	appears	after	the	reserved	word	END,	which	terminates	the
CASE	expression.	Finally,	the	CASE	statement	is	terminated	by	the	reserved	phrase	END
CASE.

Next,	consider	another	version	of	the	previous	example,	with	the	searched	CASE
expression	(affected	statements	are	shown	in	bold):

For	Example		ch05_1f.sql
Click	here	to	view	code	image

DECLARE

		v_num				NUMBER	:=	&sv_user_num;

		v_result	VARCHAR2(30);

BEGIN

		—	test	if	the	number	provided	by	the	user	is	even

		v_result	:=	CASE

																WHEN	MOD(v_num,2)	=	0

																THEN

																		v_num||’	is	even	number’

																ELSE

																		v_num||’	is	odd	number’

																END;

		DBMS_OUTPUT.PUT_LINE	(v_result);

END;

In	this	example,	there	is	no	need	to	declare	the	variable	v_num_flag	because	the
searched	CASE	expression	does	not	need	a	selector	value,	and	the	result	of	the	MOD
function	is	incorporated	into	the	search	condition.	When	this	example	is	run,	it	produces
output	identical	to	the	previous	version:

8	is	even	number

You	learned	earlier	that	a	CASE	expression	returns	a	single	value	that	is	then	assigned
to	a	variable.	In	the	examples	that	you	saw	earlier,	this	assignment	operation	was
accomplished	via	the	assignment	operator,	:=.	You	might	recall	that	there	is	another	way
to	assign	a	value	to	a	PL/SQL	variable—that	is,	via	a	SELECT	INTO	statement.	Consider
an	example	of	the	CASE	expression	used	in	a	SELECT	INTO	statement:

For	Example		ch05_4a.sql
Click	here	to	view	code	image

DECLARE

		v_course_no			NUMBER;

		v_description	VARCHAR2(50);

		v_prereq						VARCHAR2(35);

BEGIN

		SELECT	course_no

								,description

								,CASE

											WHEN	prerequisite	IS	NULL

											THEN

												‘No	prerequisite	course	required’

											ELSE

													TO_CHAR(prerequisite)

									END	prerequisite

				INTO	v_course_no

								,v_description

								,v_prereq

				FROM	course

			WHERE	course_no	=	20;

		DBMS_OUTPUT.PUT_LINE	(‘Course:							’||v_course_no);

		DBMS_OUTPUT.PUT_LINE	(‘Description:		’||v_description);

		DBMS_OUTPUT.PUT_LINE	(‘Prerequisite:	’||v_prereq);

END;

This	script	displays	the	course	number,	description,	and	number	of	a	prerequisite	course
on	the	screen.	Furthermore,	if	a	given	course	does	not	have	a	prerequisite	course,	a
message	stating	that	fact	is	displayed	on	the	screen.	To	achieve	the	desired	results,	a	CASE
expression	is	used	as	one	of	the	columns	in	the	SELECT	INTO	statement.	Its	value	is
assigned	to	the	variable	v_prereq.	Notice	that	there	is	no	semicolon	after	the	reserved
word	END	of	the	CASE	expression.

This	example	produces	the	following	output:
Click	here	to	view	code	image

Course:							20

Description:		Intro	to	Information	Systems

Prerequisite:	No	prerequisite	course	required

Course	20	does	not	have	a	prerequisite	course.	As	a	result,	the	searched	condition
WHEN	prerequisite	IS	NULL

THEN

evaluates	to	TRUE,	and	the	value	“No	prerequisite	course	required”	is	assigned	to	the
variable	v_prereq.

It	is	important	to	note	why	the	function	TO_CHAR	is	used	in	the	ELSE	clause	of	the
CASE	expression:
Click	here	to	view	code	image

CASE

		WHEN	prerequisite	IS	NULL

		THEN

				‘No	prerequisite	course	required’

		ELSE

				TO_CHAR(prerequisite)

END

A	CASE	expression	returns	a	single	value	and,	therefore,	a	single	data	type.	For	this
reason,	it	is	important	to	ensure	that	regardless	of	which	part	of	a	CASE	expression
executes,	it	always	returns	the	same	data	type.	In	the	preceding	CASE	expression,	the
WHEN	clause	returns	the	VARCHAR2	data	type.	The	ELSE	clause	returns	the	value	of	the
PREREQUISITE	column	of	the	COURSE	table.	This	column	has	been	defined	as	a
NUMBER,	so	it	is	necessary	to	convert	it	to	the	string	data	type.

When	the	TO_CHAR	function	is	not	used,	the	CASE	expression	causes	the	following
syntax	error:
Click	here	to	view	code	image

ORA-06550:	line	13,	column	17:

PL/SQL:	ORA-00932:	inconsistent	datatypes:	expected	CHAR	got	NUMBER

ORA-06550:	line	6,	column	4:

PL/SQL:	SQL	Statement	ignored

Lab	5.3:	NULLIF	and	COALESCE	Functions

After	this	lab,	you	will	be	able	to

	Use	the	NULLIF	Function

	Use	the	COALESCE	Function

The	NULLIF	and	COALESCE	functions	are	defined	by	the	ANSI	1999	standard	to	be
“CASE	abbreviations.”	Both	functions	can	be	used	as	variations	on	the	CASE	expression.

NULLIF	Function
The	NULLIF	function	compares	two	expressions.	If	they	are	equal,	then	the	function
returns	NULL;	otherwise,	it	returns	the	value	of	the	first	expression.	The	NULLIF	function
has	the	structure	shown	in	Listing	5.3.

Listing	5.3	NULLIF	Function
Click	here	to	view	code	image

NULLIF	(EXPRESSION	1,	EXPRESSION	2)

If	EXPRESSION	1	is	equal	to	EXPRESSION	2,	the	NULLIF	function	returns	NULL.	If
EXPRESSION	1	does	not	equal	EXPRESSION	2,	the	NULLIF	function	returns

EXPRESSION	1.	Note	that	the	NULLIF	function	does	the	opposite	of	the	NVL	function.	If
the	first	expression	is	NULL,	then	NVL	function	returns	the	second	expression.	If	the	first
expression	is	not	NULL,	then	the	NVL	function	returns	the	first	expression.

The	NULLIF	function	is	equivalent	to	the	following	CASE	expression:
Click	here	to	view	code	image

CASE

		WHEN	EXPRESSION	1	=	EXPRESSION	2	THEN	NULL

		ELSE	EXPRESSION	1

END

Consider	the	following	example	of	a	NULLIF	function:

For	Example		ch05_5a.sql
Click	here	to	view	code	image

DECLARE

		v_num							NUMBER	:=	&sv_user_num;

		v_remainder	NUMBER;

BEGIN

		—	calculate	the	remainder	and	if	it	is	zero	return	NULL

		v_remainder	:=	NULLIF(MOD(v_num,	2),0);

		DBMS_OUTPUT.PUT_LINE	(‘v_remainder:	‘||v_remainder);

END;

This	example	is	somewhat	similar	to	an	example	that	you	saw	earlier	in	this	chapter.	A
value	is	assigned	to	the	variable	v_num	at	run	time.	Next,	this	value	is	divided	by	2,	and
its	remainder	is	compared	to	0	via	the	NULLIF	function.	If	the	remainder	equals	0,	the
NULLIF	function	returns	NULL;	otherwise,	it	returns	the	remainder.	The	value	returned
by	the	NULLIF	function	is	stored	in	the	variable	v_remainder	and	displayed	on	the
screen	via	the	DBMS_OUTPUT.PUT_LINE	statement.

Suppose	that	for	the	first	run,	5	is	assigned	to	the	variable	v_num.	The	example
produces	the	following	output:

v_remainder:	1

Now	suppose	that	for	the	second	run,	4	is	assigned	to	the	variable	v_num.	The	example
produces	the	following	output:

v_remainder:

In	the	first	run,	5	is	not	divisible	by	2,	and	the	NULLIF	function	returns	the	value	of	the
remainder.	In	the	second	run,	4	is	divisible	by	2,	and	the	NULLIF	function	returns	NULL
as	the	value	of	the	remainder.

The	NULLIF	function	has	a	restriction:	You	cannot	assign	a	literal	NULL	to
EXPRESSION	1.	You	learned	about	literals	in	Chapter	2.	Consider	another	run	of	the
preceding	example,	in	which	the	variable	v_num	is	assigned	a	value	of	NULL,	as	shown
in	Figure	5.3.	In	this	instance,	the	example	produces	the	following	output:

v_remainder:

Figure	5.3	Assigning	Literal	NULL	in	SQL	Developer

When	NULL	is	assigned	to	the	variable	v_num,	both	the	MOD	and	NULLIF	functions
return	NULL.	The	preceding	example	does	not	produce	any	errors	because	the	literal
NULL	is	assigned	to	the	variable	v_num,	and	it	is	not	used	as	the	first	expression	of	the
NULLIF	function.

Now	consider	a	modified	version	of	the	preceding	example	(changes	are	shown	in
bold):

For	Example		ch05_5b.sql
Click	here	to	view	code	image

DECLARE

		v_remainder	NUMBER;

BEGIN

		—	calculate	the	remainder	and	if	it	is	zero	return	NULL

		v_remainder	:=	NULLIF(NULL,0);

		DBMS_OUTPUT.PUT_LINE	(‘v_remainder:	‘||v_remainder);

END;

In	the	previous	version	of	this	example,	the	MOD	function	was	used	as	EXPRESSION	1.
In	this	version,	the	literal	NULL	is	used	in	place	of	the	MOD	function,	so	that	the	example
produces	the	following	syntax	error:
Click	here	to	view	code	image

v_remainder	:=	NULLIF(NULL,0);

																																*

ERROR	at	line	5:

ORA-06550:	line	5,	column	26:

PLS-00619:	the	first	operand	in	the	NULLIF	expression	must	not	be	NULL

ORA-06550:	line	5,	column	4:

PL/SQL:	Statement	ignored

COALESCE	Function
The	COALESCE	function	compares	each	expression	to	NULL	from	the	list	of	expressions
and	returns	the	value	of	the	first	non-NULL	expression.	The	COALESCE	function	has	the
structure	shown	in	Listing	5.4.

Listing	5.4	COALESCE	Function
Click	here	to	view	code	image

COALESCE	(EXPRESSION	1,	EXPRESSION	2,	…,	EXPRESSION	N)

If	EXPRESSION	1	evaluates	to	NULL,	then	EXPRESSION	2	is	evaluated.	If
EXPRESSION	2	does	not	evaluate	to	NULL,	then	the	function	returns	EXPRESSION	2.	If
EXPRESSION	2	also	evaluates	to	NULL,	then	the	next	expression	is	evaluated.	If	all
expressions	evaluate	to	NULL,	the	function	returns	NULL.

Note	that	the	COALESCE	function	is	like	a	nested	NVL	function:
Click	here	to	view	code	image

NVL(EXPRESSION	1

			,NVL(EXPRESSION	2

								,NVL(EXPRESSION	3,…)

)

)

The	COALESCE	function	can	also	be	used	as	an	alternative	to	a	CASE	expression.	For
example,
Click	here	to	view	code	image

COALESCE	(EXPRESSION	1,	EXPRESSION	2)

is	equivalent	to
Click	here	to	view	code	image

CASE

		WHEN	EXPRESSION	1	IS	NOT	NULL

		THEN

				EXPRESSION	1

		ELSE

				EXPRESSION	2

END

If	there	are	more	than	two	expressions	to	evaluate,	then
Click	here	to	view	code	image

COALESCE	(EXPRESSION	1,	EXPRESSION	2,	…,	EXPRESSION	N)

is	equivalent	to
Click	here	to	view	code	image

CASE

		WHEN	EXPRESSION	1	IS	NOT	NULL

		THEN

				EXPRESSION	1

		ELSE

				COALESCE	(EXPRESSION	2,	…,	EXPRESSION	N)

END

which	in	turn	is	equivalent	to
Click	here	to	view	code	image

CASE

		WHEN	EXPRESSION	1	IS	NOT	NULL

		THEN

				EXPRESSION	1

		WHEN	EXPRESSION	2	IS	NOT	NULL

		THEN

				EXPRESSION	2

		…

		ELSE

				EXPRESSION	N

END

Consider	the	following	example	of	the	COALESCE	function:

For	Example		ch05_6a.sql
Click	here	to	view	code	image

SELECT	e.student_id

						,e.section_id

						,e.final_grade

						,g.numeric_grade

						,COALESCE(e.final_grade,	g.numeric_grade,	0)	grade

		FROM	enrollment	e

						,grade	g

	WHERE	e.student_id	=	g.student_id

			AND	e.section_id	=	g.section_id

			AND	e.student_id	=	102

			AND	g.grade_type_code	=	‘FI’;

This	SELECT	statement	returns	the	following	output:
Click	here	to	view	code	image

STUDENT_ID										SECTION_ID											FINAL_GRADE										NUMERIC_GRADE																								GRADE

–––-										–––-											–––—										––––-																								–—

							102																		86																(null)																					85																											85

							102																		89																				92																					92																											92

The	value	of	GRADE	equals	the	value	of	NUMERIC_GRADE	in	the	first	row.	The
COALESCE	function	compares	the	value	of	FINAL_GRADE	to	NULL.	If	it	is	NULL,	then
the	value	of	NUMERIC_GRADE	is	compared	to	NULL.	Because	the	value	of
NUMERIC_GRADE	is	not	NULL,	the	COALESCE	function	returns	the	value	of
NUMERIC_GRADE.	The	value	of	GRADE	equals	the	value	of	FINAL_GRADE	in	the
second	row.	The	COALESCE	function	returns	the	value	of	FINAL_GRADE	because	it	is
not	NULL.

The	COALESCE	function	shown	in	the	previous	example	is	equivalent	to	the	following
NVL	statement	and	CASE	expressions:
Click	here	to	view	code	image

NVL(e.final_grade,	NVL(g.numeric_grade,	0))

CASE

		WHEN	e.final_grade	IS	NOT	NULL

		THEN

				e.final_grade

		ELSE

				COALESCE(g.numeric_grade,	0)

END

and
Click	here	to	view	code	image

CASE

		WHEN	e.final_grade	IS	NOT	NULL

		THEN

				e.final_grade

		WHEN	g.numeric_grade	IS	NOT	NULL

		THEN

				g.numeric_grade

		ELSE

				0

END

Summary
In	Chapter	4,	you	began	exploring	conditional	control	structures	supported	by	Oracle’s
PL/SQL	language.	In	this	chapter,	you	continued	this	exploration	by	learning	about	CASE
statements	and	expressions	and	COALESCE	and	NULLIF	functions.	You	have	learned
how	to	employ	CASE	structures	in	both	SQL	and	PL/SQL	languages.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

6.	Iterative	Control:	Part	I

In	this	chapter,	you	will	learn	about

	Simple	Loops

	WHILE	Loops

	Numeric	FOR	Loops

Generally,	computer	programs	are	written	because	certain	tasks	must	be	executed	a
number	of	times.	For	example,	many	companies	need	to	process	transactions	on	a	monthly
basis.	A	program	allows	the	completion	of	this	task	by	being	executed	at	the	end	of	each
month.

Similarly,	programs	incorporate	instructions	that	need	to	be	executed	repeatedly.	For
example,	a	program	may	need	to	write	a	number	of	records	to	a	table.	Through	the	use	of
a	loop,	the	program	can	write	the	desired	number	of	records	to	a	table.	In	other	words,
loops	are	programming	facilities	that	allow	a	set	of	instructions	to	be	executed	repeatedly.

In	PL/SQL,	there	are	four	types	of	loops:	simple	loops,	WHILE	loops,	numeric	FOR
loops,	and	cursor	FOR	loops.	In	this	chapter,	you	will	explore	simple	loops,	WHILE	loops,
and	numeric	FOR	loops.	In	Chapter	7,	you	will	see	how	these	types	of	loops	can	be	nested
within	one	another.	In	addition,	you	will	learn	about	the	CONTINUE	and	CONTINUE
WHEN	statements,	which	were	introduced	in	Oracle	11g.	Cursor	FOR	loops	are	discussed
in	Chapters	11	and	12.

Lab	6.1:	Simple	Loops

After	this	lab,	you	will	be	able	to

	Use	Simple	Loops	with	EXIT	Conditions

	Use	Simple	Loops	with	EXIT	WHEN	Conditions

A	simple	loop,	as	you	can	see	from	its	name,	is	the	most	basic	kind	of	loop	and	has	the
structure	shown	in	Listing	6.1.

Listing	6.1	Simple	Loop	Structure
LOOP

		STATEMENT	1;

		STATEMENT	2;

		…

		STATEMENT	N;

END	LOOP;

The	reserved	word	LOOP	marks	the	beginning	of	the	simple	loop.	Statements	1	through
N	are	a	sequence	of	statements	that	is	executed	repeatedly.	These	statements	consist	of	one
or	more	of	the	standard	programming	structures.	END	LOOP	is	a	reserved	phrase	that

indicates	the	end	of	the	loop	construct.	The	flow	of	logic	from	this	structure	is	illustrated
in	Figure	6.1.

Figure	6.1	Simple	Loop

Every	time	the	simple	loop	is	iterated,	a	sequence	of	statements	is	executed,	and	then
control	passes	back	to	the	top	of	the	loop.	The	sequence	of	statements	will	execute	an
infinite	number	of	times,	because	there	is	no	statement	specifying	when	the	loop	must
terminate.	Hence,	a	simple	loop	is	called	an	infinite	loop	because	there	is	no	means	to	exit
the	loop.	A	properly	constructed	loop	needs	to	have	an	exit	condition	that	determines
when	the	loop	is	complete.	This	exit	condition	has	two	forms:	EXIT	and	EXIT	WHEN.

EXIT	Statement
The	EXIT	statement	causes	a	loop	to	terminate	when	the	exit	condition	evaluates	to
TRUE.	The	exit	condition	is	evaluated	with	the	help	of	an	IF	statement.	When	the	exit
condition	evaluates	to	TRUE,	control	passes	to	the	first	executable	statement	after	the	END
LOOP	statement.	The	structure	of	this	type	of	loop	is	shown	in	Listing	6.2.

Listing	6.2	Simple	Loop	Structure	with	an	EXIT	Statement
LOOP

		STATEMENT	1;

		STATEMENT	2;

		IF	EXIT	CONDITION	THEN

				EXIT;

		END	IF;

END	LOOP;

STATEMENT	3;

In	this	code	listing,	you	can	see	that	after	the	EXIT	CONDITION	evaluates	to	TRUE,
control	passes	to	STATEMENT	3,	which	is	the	first	executable	statement	after	the	END
LOOP	statement.	This	flow	of	logic	is	illustrated	in	Figure	6.2.

Figure	6.2	Simple	Loop	with	the	Exit	Condition

As	shown	in	Figure	6.2,	during	each	iteration,	the	loop	executes	a	sequence	of
statements.	Control	then	passes	to	the	exit	condition	of	the	loop.	If	the	exit	condition
evaluates	to	FALSE,	control	passes	to	the	top	of	the	loop.	The	sequence	of	statements	will
be	executed	repeatedly	until	the	exit	condition	evaluates	to	TRUE.	At	that	point,	the	loop	is
terminated	via	the	EXIT	statement,	and	control	passes	to	the	next	executable	statement
following	the	loop.

Figure	6.2	also	shows	that	the	exit	condition	is	included	in	the	body	of	the	loop.
Therefore,	the	decision	about	loop	termination	is	made	inside	the	body	of	the	loop,	and	the
body	of	the	loop,	or	a	part	of	it,	will	always	be	executed	at	least	once.	However,	the
number	of	iterations	of	the	loop	depends	on	the	evaluation	of	the	exit	condition	and	is	not
known	until	the	loop	completes.

This	behavior	is	further	illustrated	by	the	following	example:

For	Example		ch06_1a.sql

Click	here	to	view	code	image

DECLARE

		v_counter	BINARY_INTEGER	:=	0;

BEGIN

		LOOP

				—	increment	loop	counter	by	one

				v_counter	:=	v_counter	+	1;

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				—	if	exit	condition	yields	TRUE	exit	the	loop

				IF	v_counter	=	5

				THEN

						EXIT;

				END	IF;

		END	LOOP;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Done…’);

END;

In	this	example,	the	variable	v_counter	keeps	count	of	the	loop	iterations	and	is
often	referred	to	as	a	loop	counter.	The	statement

v_counter	:=	v_counter	+	1;

is	used	frequently	when	working	with	loops,	as	it	increments	the	value	of	v_counter	by
1.	Once	the	value	of	the	v_counter	reaches	5,	the	exit	condition

v_counter	=	5

evaluates	to	TRUE	and	the	loop	terminates.	As	mentioned	previously,	as	soon	as	the	loop
terminates,	the	control	passes	to	the	first	executable	statement	after	the	END	LOOP
statement.

When	executed,	this	example	produces	the	following	output:
v_counter	=	1

v_counter	=	2

v_counter	=	3

v_counter	=	4

v_counter	=	5

Done…

Watch	Out!

It	is	very	important	to	initialize	the	variable	v_counter	for	successful
termination	of	the	loop.	If	v_counter	is	not	initialized,	its	value	remains
NULL	and	the	statement

v_counter	:=	v_counter	+	1;

never	increments	the	value	of	v_counter	by	1	because	NULL	+	1	evaluates
to	NULL.	As	a	result,	the	exit	condition	never	evaluates	to	TRUE,	and	the	loop
becomes	an	infinite	loop.

As	mentioned	previously,	when	working	with	the	loops,	the	placement	of	the	exit
condition	affects	whether	statements	inside	the	body	of	the	loop	are	executed	during	the
last	iteration	of	the	loop.	Consider	a	modified	version	of	the	previous	example	with	the

exit	condition	placed	immediately	after	the	value	of	v_counter	is	incremented	by	1.
Affected	statements	are	shown	in	bold.
For	Example		ch06_1b.sql
Click	here	to	view	code	image

DECLARE

		v_counter	BINARY_INTEGER	:=	0;

BEGIN

		LOOP

				—	increment	loop	counter	by	one

				v_counter	:=	v_counter	+	1;

				—	if	exit	condition	yields	TRUE	exit	the	loop

				IF	v_counter	=	5

				THEN

						EXIT;

				END	IF;

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

		END	LOOP;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Done…’);

END;

This	version	of	the	example	produces	slightly	different	output:
v_counter	=	1

v_counter	=	2

v_counter	=	3

v_counter	=	4

Done…

In	this	version	of	the	script,	the	portion	of	the	loop	before	the	exit	condition	executed	5
times.	In	other	words,	the	variable	v_counter	was	incremented	by	1	five	times.
However,	on	the	fifth	iteration	of	the	loop,	the	exit	condition	evaluated	to	TRUE,	so	the
Click	here	to	view	code	image

DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

statement	was	not	executed.	Instead,	control	passed	to	the	first	executable	statement	after
the	END	LOOP.	In	essence,	this	placement	of	the	exit	condition	caused	partial	execution
of	the	loop	body	on	the	last	iteration	of	the	loop.

Did	You	Know?

	The	EXIT	statement	is	valid	only	when	placed	inside	of	a	loop.	When	placed
outside	of	a	loop,	it	will	cause	a	syntax	error.	To	avoid	this	error,	use	the
RETURN	statement	to	terminate	a	PL/SQL	block	before	its	normal	end	is
reached	as	follows:

Click	here	to	view	code	image

BEGIN

			DBMS_OUTPUT.PUT_LINE	(‘Line	1’);

			RETURN;

			DBMS_OUTPUT.PUT_LINE	(‘Line	2’);

END;

This	example	produces	the	following	output:
Line	1

Because	the	RETURN	statement	terminates	the	PL/SQL	block,	the	second
DBMS_OUTPUT.PUT_LINE	statement	is	never	executed.

	If	used	without	an	exit	condition,	the	EXIT	statement	will	cause	the	simple
loop	to	execute	only	once.	Consider	the	following	example:

Click	here	to	view	code	image
DECLARE

			v_counter	NUMBER	:=	0;

BEGIN

			LOOP

					DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

					EXIT;

			END	LOOP;

END;

This	example	produces	the	following	output:
v_counter	=	0

Because	the	EXIT	statement	is	used	without	an	exit	condition,	the	loop
terminates	as	soon	as	the	EXIT	statement	executes.

EXIT	WHEN	Statement
The	EXIT	WHEN	statement	causes	a	loop	to	terminate	only	if	the	exit	when	condition
evaluates	to	TRUE.	Control	then	passes	to	the	first	executable	statement	after	the	END
LOOP	statement.	The	structure	of	a	loop	using	an	EXIT	WHEN	statement	is	shown	in
Listing	6.3.

Listing	6.3	Simple	Loop	Structure	with	an	EXIT	WHEN	Statement
LOOP

		STATEMENT	1;

		STATEMENT	2;

		EXIT	WHEN	EXIT	CONDITION;

END	LOOP;

STATEMENT	3;

Figure	6.2	also	illustrates	the	logic	of	the	EXIT	WHEN	statement,	as	the	flow	of	logic
for	the	structure	of	EXIT	and	EXIT	WHEN	statements	is	the	same	even	though	two
different	forms	of	exit	condition	are	used.	In	other	words,

IF	EXIT	CONDITION	THEN

		EXIT;

END	IF;

is	equivalent	to
EXIT	WHEN	EXIT	CONDITION;

This	is	further	illustrated	by	the	following	modified	version	of	the	example	given	earlier
in	this	lab	(changes	are	highlighted	in	bold).

For	Example		ch06_1c.sql
Click	here	to	view	code	image

DECLARE

		v_counter	BINARY_INTEGER	:=	0;

BEGIN

		LOOP

				—	increment	loop	counter	by	one

				v_counter	:=	v_counter	+	1;

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				—	if	exit	condition	yields	TRUE	exit	the	loop

				EXIT	WHEN	v_counter	=	5;

		END	LOOP;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Done…’);

END;

In	this	version,	the	IF	and	EXIT	statements	have	been	replaced	by	the	EXIT	WHEN
statement.	As	expected,	this	version	produces	the	same	output	as	the	original	example:

v_counter	=	1

v_counter	=	2

v_counter	=	3

v_counter	=	4

v_counter	=	5

Done…

Lab	6.2:	WHILE	Loops

After	this	lab,	you	will	be	able	to

	Use	WHILE	loops

	Terminate	WHILE	loops	prematurely

Using	WHILE	Loops
A	WHILE	loop	has	the	structure	as	shown	in	Listing	6.4.

Listing	6.4	WHILE	Loop	Structure

WHILE	TEST	CONDITION	LOOP

		STATEMENT	1;

		STATEMENT	2;

		…

		STATEMENT	N;

END	LOOP;

The	reserved	word	WHILE	marks	the	beginning	of	a	loop	construct.	The	TEST
CONDITION	is	the	test	condition	of	the	loop	that	evaluates	to	TRUE	or	FALSE.	The	result
of	this	evaluation	determines	whether	the	loop	is	executed.	Statements	1	through	N	are	a
sequence	of	statements	that	is	executed	repeatedly.	END	LOOP	is	a	reserved	phrase	that
indicates	the	end	of	the	loop	construct.	This	flow	of	the	logic	is	illustrated	in	Figure	6.3.

Figure	6.3	WHILE	Loop

Figure	6.3	shows	that	the	test	condition	is	evaluated	prior	to	each	iteration	of	the	loop.
If	the	TEST	CONDITION	evaluates	to	TRUE,	the	sequence	of	statements	is	executed,	and
control	passes	to	the	top	of	the	loop	for	the	next	evaluation	of	the	test	condition.	If	the

TEST	CONDITION	evaluates	to	FALSE,	the	loop	is	terminated,	and	control	passes	to	the
next	executable	statement	following	the	loop.

As	mentioned	earlier,	before	the	body	of	the	loop	can	be	executed,	the	test	condition
must	be	evaluated.	The	decision	as	to	whether	to	execute	the	statements	in	the	body	of	the
loop	is	made	prior	to	entering	the	loop.	As	a	result,	the	loop	will	not	be	executed	at	all	if
the	test	condition	yields	FALSE.

For	Example		ch06_2a.sql
Click	here	to	view	code	image

DECLARE

		v_counter	NUMBER	:=	5;

BEGIN

		WHILE	v_counter	<	5

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				—	decrement	the	value	of	v_counter	by	one

				v_counter	:=	v_counter	-	1;

		END	LOOP;

END;

In	this	example,	the	body	of	the	loop	is	not	executed	at	all	because	the	test	condition
v_counter	<	5

of	the	loop	evaluates	to	FALSE	as	the	variable	v_counter	is	initialized	to	5.

The	test	condition	must	evaluate	to	TRUE	at	least	once	for	the	statements	in	the	loop	to
execute.	However,	it	is	also	important	to	ensure	that	the	test	condition	will	eventually
evaluate	to	FALSE.	Otherwise,	the	WHILE	loop	will	execute	continually,	as	demonstrated
by	the	following	example	(changes	are	shown	in	bold).

For	Example		ch06_2b.sql
Click	here	to	view	code	image

DECLARE

		v_counter	NUMBER	:=	1;

BEGIN

		WHILE	v_counter	<	5

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				—	decrement	the	value	of	v_counter	by	one

				v_counter	:=	v_counter	-	1;

		END	LOOP;

END;

This	is	an	example	of	an	infinite	WHILE	loop.	The	test	condition	always	evaluates	to
TRUE,	because	the	value	of	v_counter	is	decremented	by	1	and	is	always	less	than	5.

Now	consider	a	modified	version	of	this	example,	where	the	loop	executes	four	times.
In	this	example,	the	test	condition	eventually	evaluates	to	FALSE	because	the	value	of
v_counter	is	incremented	by	1.	Affected	statements	are	shown	in	bold.

For	Example		ch06_2c.sql

Click	here	to	view	code	image

DECLARE

		v_counter	NUMBER	:=	1;

BEGIN

		WHILE	v_counter	<	5

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				—	increment	the	value	of	v_counter	by	one

				v_counter	:=	v_counter	+	1;

		END	LOOP;

END;

This	version	of	the	example	produces	the	following	output:
v_counter	=	1

v_counter	=	2

v_counter	=	3

v_counter	=	4

Did	You	Know?

Boolean	expressions	can	also	be	used	to	determine	when	the	loop	should
terminate.

DECLARE

		v_test	BOOLEAN	:=	TRUE;

BEGIN

		WHILE	v_test

		LOOP

				STATEMENTS;

				IF	TEST	CONDITION

				THEN

						v_test	:=	FALSE;

				END	IF;

		END	LOOP;

END;

When	using	a	Boolean	expression	as	a	test	condition	of	a	loop,	you	must
ensure	that	a	different	value	is	eventually	assigned	to	the	Boolean	variable	to
exit	the	loop.	Otherwise,	the	loop	will	become	infinite.

Premature	Termination	of	the	WHILE	Loop
The	EXIT	and	EXIT	WHEN	statements	can	be	used	inside	the	body	of	a	WHILE	loop.	If
the	exit	condition	evaluates	to	TRUE	before	the	test	condition	evaluates	to	FALSE,	the
loop	is	terminated	prematurely.	If	the	test	condition	evaluates	to	FALSE	before	the	exit
condition	evaluates	to	TRUE,	there	is	no	premature	termination	of	the	loop.	This	structure
is	shown	in	Listing	6.5.

Listing	6.5	Premature	Termination	of	the	WHILE	Loop
WHILE	TEST	CONDITION	LOOP

		STATEMENT	1;

		STATEMENT	2;

		IF	EXIT	CONDITION

		THEN

				EXIT;

		END	IF;

END	LOOP;

STATEMENT	3;

Or
WHILE	TEST	CONDITION

LOOP

		STATEMENT	1;

		STATEMENT	2;

		EXIT	WHEN	EXIT	CONDITION;

END	LOOP;

STATEMENT	3;

Consider	the	following	example:

For	Example		ch06_3a.sql
Click	here	to	view	code	image

DECLARE

		v_counter	NUMBER	:=	1;

BEGIN

		WHILE	v_counter	<=	5

		LOOP

					DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				IF	v_counter	=	2

				THEN

						EXIT;

				END	IF;

				v_counter	:=	v_counter	+	1;

		END	LOOP;

END;

Before	the	statements	in	the	body	of	the	WHILE	loop	are	executed,	the	test	condition
v_counter	<=	5

must	evaluate	to	TRUE.	Then,	the	value	of	v_counter	is	displayed	on	the	screen	and
incremented	by	1.	Next,	the	exit	condition

v_counter	=	2

is	evaluated.	As	soon	as	the	value	of	v_counter	reaches	2,	the	loop	is	terminated.

According	to	the	test	condition,	the	loop	should	execute	five	times.	However,	the	loop
is	executed	only	twice,	because	the	exit	condition	is	present	inside	the	body	of	the	loop.
Therefore,	the	loop	terminates	prematurely.

Now	try	to	reverse	the	test	condition	and	the	exit	condition,	as	shown	in	the	following
example	(all	changes	are	shown	in	bold).

For	Example		ch06_3b.sql
Click	here	to	view	code	image

DECLARE

		v_counter	NUMBER	:=	1;

BEGIN

		WHILE	v_counter	<=	2

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				v_counter	:=	v_counter	+	1;

				IF	v_counter	=	5

				THEN

						EXIT;

				END	IF;

		END	LOOP;

END;

In	this	version	of	the	example,	the	test	condition	is
v_counter	<=	2

and	the	exit	condition	is
v_counter	=	5

In	this	case,	the	loop	is	executed	twice.	However,	it	does	not	terminate	prematurely,
because	the	exit	condition	never	evaluates	to	TRUE.	As	soon	as	the	value	of	v_counter
reaches	3,	the	test	condition	evaluates	to	FALSE,	and	the	loop	is	terminated.

Both	examples,	when	run,	produce	the	following	output:
v_counter	=	1

v_counter	=	2

These	examples	demonstrate	not	only	the	use	of	the	EXIT	statement	inside	the	body	of
the	WHILE	loop,	but	also	a	bad	programming	practice.	In	the	first	example,	the	test
condition	can	be	changed	so	that	there	is	no	need	to	use	an	exit	condition,	because
essentially	both	conditions	are	used	to	terminate	the	loop.	In	the	second	example,	the	exit
condition	is	useless,	because	its	terminal	value	is	never	reached.	You	should	never	include
unnecessary	code	in	your	programs.

Lab	6.3:	Numeric	FOR	Loops

After	this	lab,	you	will	be	able	to

	Use	numeric	FOR	loops	with	the	IN	option

	Use	numeric	FOR	loops	with	the	REVERSE	option

	Terminate	numeric	FOR	loops	prematurely

A	numeric	FOR	loop	is	called	numeric	because	it	requires	an	integer	as	its	terminating
value.	The	structure	of	such	a	loop	is	shown	in	Listing	6.6.

Listing	6.6	Numeric	FOR	Loop	Structure
Click	here	to	view	code	image

FOR	loop_counter	IN	[REVERSE]	lower_limit..upper_limit

LOOP

		STATEMENT	1;

		STATEMENT	2;

		…

		STATEMENT	N;

END	LOOP;

The	reserved	word	FOR	marks	the	beginning	of	the	FOR	loop	construct.	The	variable
loop_counter	is	an	implicitly	defined	index	variable.	There	is	no	need	to	define	the
loop	counter	in	the	declaration	section	of	the	PL/SQL	block;	instead,	this	variable	is
defined	by	the	loop	construct.	The	lower_limit	and	upper_limit	are	integer
numbers	or	expressions	that	evaluate	to	integer	values	at	run	time,	and	the	double	dot	(..)
serves	as	the	range	operator.	The	lower_limit	and	upper_limit	define	the	number
of	iterations	for	the	loop,	and	their	values	are	evaluated	once,	for	the	first	iteration	of	the
loop.	At	this	point,	it	is	determined	how	many	times	the	loop	will	iterate.	Statements	1
through	N	are	a	sequence	of	statements	that	is	executed	repeatedly.	END	LOOP	is	a
reserved	phrase	that	marks	the	end	of	the	loop	construct.

One	of	the	reserved	words	IN	or	IN	REVERSE	must	be	present	when	defining	the
loop.	When	the	REVERSE	keyword	is	used,	the	loop	counter	will	iterate	from	the	upper
limit	to	the	lower	limit.	However,	the	syntax	for	the	limit	specification	does	not	change.
The	lower	limit	is	always	referenced	first.	The	flow	of	this	logic	is	illustrated	in	Figure
6.4.

Figure	6.4	Numeric	FOR	Loop

Figure	6.4	shows	that	the	loop	counter	is	initialized	to	the	lower	limit	for	the	first
iteration	of	the	loop	only.	However,	the	value	of	the	loop	counter	is	tested	for	each
iteration	of	the	loop.	As	long	as	the	value	of	v_counter	ranges	from	the	lower	limit	to
the	upper	limit,	the	statements	inside	the	body	of	the	loop	are	executed.	When	the	value	of
the	loop	counter	falls	outside	the	range	specified	by	the	lower	limit	and	the	upper	limit,
control	passes	to	the	first	executable	statement	outside	the	loop.

Using	the	IN	Option	in	the	Loop
Consider	the	following	example,	which	illustrates	a	numeric	FOR	loop	that	employs	the
IN	option.

For	Example		ch06_4a.sql
Click	here	to	view	code	image

BEGIN

		FOR	v_counter	IN	1..5

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

		END	LOOP;

END;

In	this	example,	there	is	no	declaration	section	for	the	PL/SQL	block	because	the	only
variable	used,	v_counter,	is	the	loop	counter.	Numbers	1..5	specify	the	range	of	the
integer	numbers	for	which	this	loop	is	executed.

Notice	that	there	is	no	statement
v_counter	:=	v_counter	+	1;

anywhere,	either	inside	or	outside	the	body	of	the	loop.	The	value	of	v_counter	is
incremented	implicitly	by	the	FOR	loop	itself.

This	example	produces	the	following	output	when	run:
v_counter	=	1

v_counter	=	2

v_counter	=	3

v_counter	=	4

v_counter	=	5

If	you	include	the	statement
v_counter	:=	v_counter	+	1;

in	the	body	of	the	loop,	the	PL/SQL	script	will	report	errors	when	you	try	to	compile	it.
Consider	the	following	example	(newly	added	statement	is	shown	in	bold).

For	Example		ch06_4b.sql
Click	here	to	view	code	image

BEGIN

		FOR	v_counter	IN	1..5

		LOOP

				v_counter	:=	v_counter	+	1;

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||	v_counter);

		END	LOOP;

END;

When	this	example	is	run,	it	produces	the	following	error	message:
Click	here	to	view	code	image

ORA-06550:	line	4,	column	7:

PLS-00363:	expression	‘V_COUNTER’	cannot	be	used	as	an	assignment	target

ORA-06550:	line	4,	column	7:

PL/SQL:	Statement	ignored

Watch	Out!

The	loop	counter	is	implicitly	defined	and	incremented	when	a	numeric	FOR
loop	is	used.	As	a	result,	it	cannot	be	referenced	outside	the	body	of	the	FOR
loop.	Consider	the	following	example:
Click	here	to	view	code	image

BEGIN

		FOR	v_counter	IN	1..5

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

		END	LOOP;

		DBMS_OUTPUT.PUT_LINE	(‘Counter	outside	the	loop	is

‘||v_counter);

END;

When	this	example	is	run,	it	produces	the	following	error	message:
Click	here	to	view	code	image

(‘Counter	outside	the	loop	is	‘||v_counter);

																																										*

ORA-06550:	line	6,	column	58:

PLS-00201:	identifier	‘V_COUNTER’	must	be	declared

ORA-06550:	line	6,	column	4:

PL/SQL:	Statement	ignored

Because	the	loop	counter	is	declared	implicitly	by	the	loop,	the	variable
v_counter	cannot	be	referenced	outside	the	loop.	As	soon	as	the	loop
completes,	the	loop	counter	ceases	to	exist.

Using	the	REVERSE	Option	in	the	Loop
Earlier	in	this	lab,	you	encountered	two	options	that	are	available	when	the	value	of	the
loop	counter	is	evaluated,	IN	and	IN	REVERSE.	You	have	already	seen	examples	that
demonstrate	the	usage	of	the	IN	option	for	the	loop.	The	next	example	demonstrates	the
usage	of	the	IN	REVERSE	option	for	the	loop.

For	Example		ch06_5a.sql
Click	here	to	view	code	image

BEGIN

		FOR	v_counter	IN	REVERSE	1..5

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

		END	LOOP;

END;

When	this	example	is	run,	it	produces	the	following	output:
v_counter	=	5

v_counter	=	4

v_counter	=	3

v_counter	=	2

v_counter	=	1

As	mentioned	earlier,	even	though	the	REVERSE	keyword	is	present,	the	lower	limit	of

the	loop	is	referenced	first.	However,	the	loop	counter	is	evaluated	from	the	upper	limit	to
the	lower	limit.	For	the	first	iteration	of	the	loop,	v_counter	(in	our	case,	it	is	a	loop
counter)	is	initialized	to	5	(the	upper	limit).	Then	its	value	is	displayed	on	the	screen.	For
the	second	iteration	of	the	loop,	the	value	of	v_counter	is	decreased	by	1,	and
displayed	on	the	screen.
The	number	of	times	the	body	of	the	loop	is	executed	is	not	affected	by	which	option	is

used,	IN	or	IN	REVERSE.	Only	the	values	assigned	to	the	lower	limit	and	the	upper	limit
determine	how	many	times	the	body	of	the	loop	executes.

Premature	Termination	of	the	Numeric	FOR	Loop
The	EXIT	and	EXIT	WHEN	statements	covered	in	the	previous	labs	can	be	used	inside
the	body	of	a	numeric	FOR	loop	as	well.	If	the	exit	condition	evaluates	to	TRUE	before	the
loop	counter	reaches	its	terminal	value,	the	FOR	loop	is	terminated	prematurely.	If	the
loop	counter	reaches	its	terminal	value	before	the	exit	condition	yields	TRUE,	there	is	no
premature	termination	of	the	FOR	loop.	This	structure	is	shown	in	Listing	6.7.

Listing	6.7	Premature	Termination	of	the	Numeric	FOR	Loop
Click	here	to	view	code	image

FOR	loop_counter	IN	lower_limit..upper_limit

LOOP

		STATEMENT	1;

		STATEMENT	2;

		IF	EXIT	CONDITION	THEN

				EXIT;

		END	IF;

END	LOOP;

STATEMENT	3;

Or
Click	here	to	view	code	image

FOR	loop_counter	IN	lower_limit..upper_limit

LOOP

		STATEMENT	1;

		STATEMENT	2;

		EXIT	WHEN	EXIT	CONDITION;

END	LOOP;

STATEMENT	3;

Consider	the	following	example	of	a	FOR	loop	that	uses	the	exit	when	condition.	This
condition	causes	the	loop	to	terminate	prematurely.

For	Example		ch06_6a.sql
Click	here	to	view	code	image

BEGIN

		FOR	v_counter	IN	1..5

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				EXIT	WHEN	v_counter	=	3;

		END	LOOP;

END;

According	to	the	range	specified,	the	loop	should	execute	five	times.	However,	the	loop
executes	only	three	times	because	the	exit	condition	appears	inside	the	body	of	the	loop.
Thus,	the	loop	terminates	prematurely,	as	indicated	by	the	example’s	output:

v_counter	=	1

v_counter	=	2

v_counter	=	3

Summary
In	this	chapter,	you	explored	three	types	of	loops	supported	in	PL/SQL.	You	also	learned
how	to	employ	exit	conditions	to	prevent	infinite	loops	and	how	to	terminate	loops
prematurely.	In	the	next	chapter,	you	will	continue	to	learn	about	loops	and	discover	how
they	can	be	nested	inside	one	another.	Furthermore,	you	will	learn	about	other	loop
features,	CONTINUE	and	CONTINUE	WHEN,	that	were	introduced	in	Oracle	11g.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

7.	Iterative	Control:	Part	II

In	this	chapter,	you	will	learn	about

	CONTINUE	Statements

	Nested	Loops

In	Chapter	6,	you	explored	three	types	of	loops:	simple	loops,	WHILE	loops,	and	numeric
FOR	loops.	You	also	learned	that	these	types	of	loops	can	be	terminated	with	an	exit
condition.	In	this	chapter,	you	will	learn	about	a	new	PL/SQL	feature	introduced	in	Oracle
11g	called	continue	condition.	Similar	to	the	exit	condition,	the	continue	condition	has	two
forms,	CONTINUE	and	CONTINUE	WHEN,	and	may	be	used	inside	the	body	of	the	loop
only.	You	will	also	learn	how	to	nest	different	types	of	loops	inside	one	another.

Lab	7.1:	CONTINUE	Statement

After	this	lab,	you	will	be	able	to

	Use	CONTINUE	Statements

	Use	CONTINUE	WHEN	Statements

As	mentioned	previously,	the	continue	condition	has	two	forms:	CONTINUE	and
CONTINUE	WHEN.

Using	CONTINUE	Statement
The	CONTINUE	statement	causes	a	loop	to	terminate	its	current	iteration	and	pass	control
to	the	next	iteration	of	the	loop	when	the	continue	condition	evaluates	to	TRUE.	The
continue	condition	is	evaluated	with	the	help	of	an	IF	statement.	When	the	continue
condition	evaluates	to	TRUE,	control	passes	to	the	first	executable	statement	in	the	body	of
the	loop.	This	structure	is	shown	in	Listing	7.1.

Listing	7.1	Simple	Loop	Structure	with	a	CONTINUE	Statement
LOOP

		STATEMENT	1;

		STATEMENT	2;

		IF	CONTINUE	CONDITION	THEN

					CONTINUE;

		END	IF;

		STATEMENT	3;

		EXIT	WHEN	EXIT	CONDITION;

END	LOOP;

STATEMENT	4;

As	soon	as	the	CONTINUE	CONDITION	evaluates	to	TRUE,	control	passes	back	to
STATEMENT	1,	which	is	the	first	executable	statement	inside	the	body	of	the	loop.	In	this

case,	it	causes	partial	execution	of	the	loop,	as	the	statements	following	after	the	continue
condition	inside	the	body	of	the	loop	are	not	executed.	This	flow	of	logic	for	the
CONTINUE	statement	is	illustrated	in	Figure	7.1.

Figure	7.1	Simple	Loop	with	the	Continue	Condition

As	shown	in	Figure	7.1,	during	each	iteration,	the	loop	executes	a	sequence	of
statements.	Control	then	passes	to	the	CONTINUE	CONDITION	of	the	loop.	If	the
CONTINUE	CONDITION	evaluates	to	TRUE,	control	passes	to	the	top	of	the	loop.	The
sequence	of	statements	will	be	executed	repeatedly	until	the	CONTINUE	CONDITION
evaluates	to	FALSE.	When	the	CONTINUE	CONDITION	evaluates	to	FALSE,	control
passes	to	the	next	executable	statement	in	the	body	of	the	loop,	which	in	this	case
evaluates	the	EXIT	CONDITION.

Did	You	Know?

	CONTINUE	and	CONTINUE	WHEN	statements	can	be	used	with	all	types	of
loops.

	The	difference	between	the	exit	and	continue	conditions	is	that	the	exit
condition	terminates	the	loop,	whereas	the	continue	condition	terminates	the
current	iteration	of	the	loop.

Consider	the	following	example,	which	illustrates	how	continue	and	exit	conditions
affect	loop	execution.

For	Example		ch07_1a.sql
Click	here	to	view	code	image

DECLARE

		v_counter	BINARY_INTEGER	:=	0;

BEGIN

		LOOP

				—	increment	loop	counter	by	one

				v_counter	:=	v_counter	+	1;

				DBMS_OUTPUT.PUT_LINE

						(‘Before	continue	condition,	v_counter	=	‘||v_counter);

				—	if	continue	condition	yields	TRUE	pass	control	to	the	first

				—	executable	statement	of	the	loop

				IF	v_counter	<	3

				THEN

						CONTINUE;

				END	IF;

				DBMS_OUTPUT.PUT_LINE

						(‘After	continue	condition,	v_counter	=	‘||v_counter);

				—	if	exit	condition	yields	TRUE	exit	the	loop

				IF	v_counter	=	5

				THEN

						EXIT;

				END	IF;

		END	LOOP;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Done…’);

END;

When	run,	this	script	produces	the	following	output:
Click	here	to	view	code	image

Before	continue	condition,	v_counter	=	1

Before	continue	condition,	v_counter	=	2

Before	continue	condition,	v_counter	=	3

After	continue	condition,		v_counter	=	3

Before	continue	condition,	v_counter	=	4

After	continue	condition,		v_counter	=	4

Before	continue	condition,	v_counter	=	5

After	continue	condition,		v_counter	=	5

Done…

Next,	let’s	take	a	closer	look	at	what	happens	inside	the	body	of	the	loop	during	its
execution.	For	the	first	two	iterations	of	the	loop	(the	values	of	v_counter	are	1	and	2,
respectively),	the	continue	condition

IF	v_counter	<	3

evaluates	to	TRUE,	and	control	of	the	execution	passes	to	the	first	statement	inside	the
body	of	the	loop.	As	a	result,	the	value	of	v_counter	is	incremented	by	1	and	only	the
first	DBMS_OUTPUT.PUT_LINE	statement	is	executed:
Click	here	to	view	code	image

Before	continue	condition,	v_counter	=	1

Before	continue	condition,	v_counter	=	2

In	other	words,	for	the	first	two	iterations,	only	part	of	the	loop	prior	to	the	CONTINUE
statement	is	executed.

For	the	last	three	iterations	of	the	loops	(the	values	of	v_counter	are	3,	4,	and	5,
respectively)	the	continue	condition	evaluates	to	FALSE,	and	the	second
DBMS_OUTPUT.PUT_LINE	is	executed:
Click	here	to	view	code	image

Before	continue	condition,	v_counter	=	3

After	continue	condition,		v_counter	=	3

Before	continue	condition,	v_counter	=	4

After	continue	condition,		v_counter	=	4

Before	continue	condition,	v_counter	=	5

After	continue	condition,		v_counter	=	5

In	this	case,	all	statements	inside	the	body	of	the	loop	are	executed.

Finally,	when	the	value	v_counter	reaches	5,	the	exit	condition
IF	v_counter	=	5

evaluates	to	TRUE	and	the	loop	terminates.	The	last	DBMS_OUTPUT.PUT_LINE
statement	is	executed	as	well.

Watch	Out!

When	the	CONTINUE	statement	is	used	without	a	continue	condition,	the
current	iteration	of	the	loop	will	terminate	unconditionally	and	control	of	the
execution	will	pass	to	the	first	executable	statement	in	the	body	of	the	loop.
Consider	the	following	example:
Click	here	to	view	code	image

DECLARE

		v_counter	NUMBER	:=	0;

BEGIN

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter	=	‘||v_counter);

				CONTINUE;

				v_counter	:=	v_counter	+	1;

				EXIT	WHEN	v_counter	=	5;

		END	LOOP;

END;

Because	the	CONTINUE	statement	is	used	without	a	continue	condition,	this
loop	will	never	reach	its	EXIT	WHEN	condition	and	as	a	result	will	never
terminate.

CONTINUE	WHEN	Statement
The	CONTINUE	WHEN	statement	causes	a	loop	to	terminate	its	current	iteration	and	pass
control	to	the	next	iteration	of	the	loop	only	when	the	continue	condition	evaluates	to
TRUE.	Control	then	passes	to	the	first	executable	statement	inside	the	body	of	the	loop.
The	structure	of	a	loop	using	a	CONTINUE	WHEN	clause	is	shown	in	Listing	7.2.

Listing	7.2	Simple	Loop	Structure	with	a	CONTINUE	WHEN	Statement
Click	here	to	view	code	image

LOOP

		STATEMENT	1;

		STATEMENT	2;

		CONTINUE	WHEN	CONTINUE	CONDITION;

		EXIT	WHEN	EXIT	CONDITION;

END	LOOP;

STATEMENT	3;

Note	that	the	flow	of	the	logic	illustrated	in	Figure	7.1	applies	to	the	CONTINUE	WHEN
statement	as	well.	In	other	words,

IF	CONDITION

THEN

		CONTINUE;

END	IF;

is	equivalent	to
CONTINUE	WHEN	CONDITION;

This	similarity	is	illustrated	further	by	the	modified	version	of	the	previous	example.
When	executed,	this	version	produces	output	much	like	that	of	the	previous	version
(affected	statements	are	shown	in	bold).

For	Example		ch07_1b.sql
Click	here	to	view	code	image

DECLARE

		v_counter	BINARY_INTEGER	:=	0;

BEGIN

		LOOP

				—	increment	loop	counter	by	one

				v_counter	:=	v_counter	+	1;

				DBMS_OUTPUT.PUT_LINE

						(‘Before	continue	condition,	v_counter	=	‘||v_counter);

				—	if	continue	condition	yields	TRUE	pass	control	to	the	first

				—	executable	statement	of	the	loop

				CONTINUE	WHEN	v_counter	<	3;

				DBMS_OUTPUT.PUT_LINE

						(‘After	continue	condition,	v_counter	=	‘||v_counter);

				—	if	exit	condition	yields	TRUE	exit	the	loop

				IF	v_counter	=	5

				THEN

						EXIT;

				END	IF;

		END	LOOP;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Done…’);

END;

Watch	Out!

The	CONTINUE	and	CONTINUE	WHEN	statements	are	valid	only	when
placed	inside	a	loop.	When	placed	outside	a	loop,	they	will	cause	a	syntax
error.

When	you	are	working	with	the	exit	and	continue	conditions,	the	execution	of	a	loop
and	the	number	of	iterations	are	affected	by	the	placement	of	those	conditions	inside	the
body	of	the	loop.	This	is	illustrated	further	by	the	following	example	(changes	are
highlighted	in	bold):

For	Example		ch07_1c.sql
Click	here	to	view	code	image

DECLARE

		v_counter	BINARY_INTEGER	:=	0;

BEGIN

		LOOP

				—	increment	loop	counter	by	one

				v_counter	:=	v_counter	+	1;

				DBMS_OUTPUT.PUT_LINE

								(‘Before	continue	condition,	v_counter	=	‘||v_counter);

				—	if	continue	condition	yields	TRUE	pass	control	to	the	first

				—	executable	statement	of	the	loop

				CONTINUE	WHEN	v_counter	>	3;

				DBMS_OUTPUT.PUT_LINE

								(‘After	continue	condition,	v_counter	=	‘||v_counter);

				—	if	exit	condition	yields	TRUE	exit	the	loop

				IF	v_counter	=	5

				THEN

						EXIT;

				END	IF;

		END	LOOP;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Done…’);

END;

In	this	version	of	the	script,	the	continue	condition	has	been	changed	to
CONTINUE	WHEN	v_counter	>	3;

This	change	leads	to	an	infinite	loop.	As	long	as	the	value	of	v_counter	is	less	than	or
equal	to	3,	the	continue	condition	evaluates	to	FALSE.	Therefore,	for	the	first	three
iterations	of	the	loop,	all	statements	inside	the	body	of	the	loop	are	executed	along	with
the	exit	condition,	which	evaluates	to	FALSE.

Starting	with	the	fourth	iteration	of	the	loop,	the	continue	condition	evaluates	to	TRUE,
causing	partial	execution	of	the	loop.	Due	to	this	partial	execution,	the	exit	condition
cannot	be	reached,	causing	this	loop	to	become	infinite.	To	mitigate	this	situation,	the
placement	of	the	continue	and	exit	conditions	should	be	changed	as	shown	in	the
following	example	(changes	are	shown	in	bold):

For	Example		ch07_1d.sql
Click	here	to	view	code	image

DECLARE

		v_counter	BINARY_INTEGER	:=	0;

BEGIN

		LOOP

				—	increment	loop	counter	by	one

				v_counter	:=	v_counter	+	1;

				—	if	exit	condition	yields	TRUE	exit	the	loop

				IF	v_counter	=	5

				THEN

						EXIT;

				END	IF;

				DBMS_OUTPUT.PUT_LINE

						(‘Before	continue	condition,	v_counter	=	‘||v_counter);

				—	if	continue	condition	yields	TRUE	pass	control	to	the	first

				—	executable	statement	of	the	loop

				CONTINUE	WHEN	v_counter	>	3;

				DBMS_OUTPUT.PUT_LINE

						(‘After	continue	condition,	v_counter	=	‘||v_counter);

		END	LOOP;

		—	control	resumes	here

		DBMS_OUTPUT.PUT_LINE	(‘Done…’);

END;

In	this	version	of	the	script,	the	exit	condition	appears	before	the	continue	condition.
Such	placement	of	the	exit	condition	guarantees	eventual	termination	of	the	loop,	as
illustrated	by	the	following	output:
Click	here	to	view	code	image

Before	continue	condition,	v_counter	=	1

After	continue	condition,		v_counter	=	1

Before	continue	condition,	v_counter	=	2

After	continue	condition,		v_counter	=	2

Before	continue	condition,	v_counter	=	3

After	continue	condition,		v_counter	=	3

Before	continue	condition,	v_counter	=	4

Done…

Here,	on	the	fifth	iteration	of	the	loop,	the	value	of	v_counter	is	incremented	by	1,
and	the	exit	condition	evaluates	to	TRUE.	As	a	result,	none	of	the
DBMS_OUTPUT.PUT_LINE	statements	inside	the	body	of	the	loop	are	executed;	instead,
control	of	the	execution	passes	to	the	first	executable	statement	after	the	END	LOOP	and
“Done…”	is	displayed	on	the	screen.

Lab	7.2:	Nested	Loops

After	this	lab,	you	will	be	able	to

	Use	Nested	Loops

	Use	Loop	Labels

Using	Nested	Loops
You	have	explored	three	types	of	loops:	simple	loops,	WHILE	loops,	and	numeric	FOR
loops.	Any	of	these	three	types	of	loops	can	be	nested	inside	one	another.	For	example,	a
simple	loop	can	be	nested	inside	a	WHILE	loop,	and	vice	versa.	Consider	the	following
example:

For	Example		ch07_2a.sql
Click	here	to	view	code	image

DECLARE

		v_counter1	BINARY_INTEGER	:=	0;

		v_counter2	BINARY_INTEGER;

BEGIN

		WHILE	v_counter1	<	3

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘v_counter1:	‘||v_counter1);

				v_counter2	:=	0;

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘		v_counter2:	‘||v_counter2);

						v_counter2	:=	v_counter2	+	1;

						EXIT	WHEN	v_counter2	>=	2;

				END	LOOP;

				v_counter1	:=	v_counter1	+	1;

		END	LOOP;

END;

In	this	example,	the	WHILE	loop	is	called	an	outer	loop	because	it	encompasses	the
simple	loop.	The	simple	loop	(highlighted	in	bold)	is	called	an	inner	loop	because	it	is
enclosed	by	the	body	of	the	WHILE	loop.

The	outer	loop	is	controlled	by	the	loop	counter,	v_counter1,	and	it	will	execute
providing	the	value	of	v_counter1	is	less	than	3.	With	each	iteration	of	the	loop,	the
value	of	v_counter1	is	displayed	on	the	screen.	Next,	the	value	of	v_counter2	is
initialized	to	0.	Note	that	v_counter2	is	not	initialized	at	the	time	of	the	declaration.
The	simple	loop	is	placed	inside	the	body	of	the	WHILE	loop,	so	the	value	of
v_counter2	must	be	initialized	every	time	before	control	passes	to	the	simple	loop.

Once	control	passes	to	the	inner	loop,	the	value	of	v_counter2	is	displayed	on	the
screen	and	incremented	by	1.	Next,	the	exit	when	condition	is	evaluated.	If	this	condition
evaluates	to	FALSE,	control	passes	back	to	the	top	of	the	simple	loop.	If	it	evaluates	to
TRUE,	control	passes	to	the	first	executable	statement	outside	the	loop.	In	our	case,	control
passes	back	to	the	outer	loop,	the	value	of	v_counter1	is	incremented	by	1,	and	the	test
condition	of	the	WHILE	loop	is	evaluated	again.

This	logic	is	demonstrated	by	the	output	produced	by	the	example:
v_counter1:	0

		v_counter2:	0

		v_counter2:	1

v_counter1:	1

		v_counter2:	0

		v_counter2:	1

v_counter1:	2

		v_counter2:	0

		v_counter2:	1

Notice	that	for	each	value	of	v_counter1,	two	values	of	v_counter2	are	displayed.
For	the	first	iteration	of	the	outer	loop,	the	value	of	v_counter1	is	equal	to	0.	Once
control	passes	to	the	inner	loop,	the	value	of	v_counter2	is	displayed	on	the	screen
twice,	and	so	forth.

Using	Loop	Labels
Earlier	in	the	book,	you	learned	about	labeling	of	PL/SQL	blocks.	Loops	can	be	labeled	in
a	similar	manner,	as	illustrated	in	Listing	7.3.

Listing	7.3	Loop	Labels
Click	here	to	view	code	image

<<label_name>>

FOR	loop_counter	IN	lower_limit..upper_limit

LOOP

		STATEMENT	1;

		…

		STATEMENT	N;

END	LOOP	label_name;

The	label	must	appear	immediately	before	the	beginning	of	the	loop.	The	preceding
syntax	shows	that	the	label	can	be	optionally	used	at	the	end	of	the	loop	statement.	It	is
very	helpful	to	label	nested	loops—such	labels	improve	the	script’s	readability.	Consider
the	following	example:

For	Example		ch07_3a.sql
Click	here	to	view	code	image

BEGIN

		<<outer_loop>>

		FOR	i	IN	1..3

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘i	=	‘||i);

				<<inner_loop>>

				FOR	j	IN	1..2

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘j	=	‘||j);

				END	LOOP	inner_loop;

		END	LOOP	outer_loop;

END;

For	both	outer	and	inner	loops,	the	statement	END	LOOP	must	be	used.	If	the	loop	label
is	added	to	each	END	LOOP	statement,	it	becomes	easier	to	understand	which	loop	is
being	terminated.

Loop	labels	can	also	be	used	when	referencing	loop	counters,	as	shown	in	the	following
example:

For	Example		ch07_4a.sql
Click	here	to	view	code	image

BEGIN

		<<outer>>

		FOR	v_counter	IN	1..3

		LOOP

				<<inner>>

				FOR	v_counter	IN	1..2

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘outer.v_counter	‘||outer.v_counter);

						DBMS_OUTPUT.PUT_LINE	(‘inner.v_counter	‘||inner.v_counter);

				END	LOOP	inner;

		END	LOOP	outer;

END;

In	this	example,	both	the	inner	and	outer	loops	use	the	same	loop	counter,
v_counter.	To	reference	both	the	outer	and	inner	values	of	v_counter,	loop	labels
are	used.	This	example	produces	the	following	output:

outer.v_counter	1

inner.v_counter	1

outer.v_counter	1

inner.v_counter	2

outer.v_counter	2

inner.v_counter	1

outer.v_counter	2

inner.v_counter	2

outer.v_counter	3

inner.v_counter	1

outer.v_counter	3

inner.v_counter	2

Note	that	the	script	is	able	to	differentiate	between	two	variables	having	the	same	name
because	loop	labels	are	used	when	the	variables	are	referenced.	If	no	loop	labels	are	used
when	v_counter	is	referenced,	the	output	produced	by	this	script	will	change
significantly.	Basically,	once	control	passes	to	the	inner	loop,	the	value	of	v_counter
from	the	outer	loop	is	unavailable.	When	control	passes	back	to	the	outer	loop,	the	value
of	v_counter	becomes	available	again,	as	shown	in	the	following	example	(affected
statements	are	shown	in	bold):

For	Example		ch07_4b.sql
Click	here	to	view	code	image

BEGIN

		<<outer>>

		FOR	v_counter	IN	1..3

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘outer.v_counter	‘||	v_counter);

				<<inner>>

				FOR	v_counter	IN	1..2

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘		outer.v_counter	‘||v_counter);

						DBMS_OUTPUT.PUT_LINE	(‘		inner.v_counter	‘||v_counter);

				END	LOOP	inner;

		END	LOOP	outer;

END;

To	highlight	the	loop	behavior,	a	new	DBMS_OUTPUT.PUT_LINE	statement	has	been
added	to	the	outer	loop,	and	the	loop	labels	have	been	removed	when	referencing	the
variable	v_counter.	When	executed,	this	version	of	the	script	produces	the	following
output:

outer.v_counter	1

		outer.v_counter	1

		inner.v_counter	1

		outer.v_counter	2

		inner.v_counter	2

outer.v_counter	2

		outer.v_counter	1

		inner.v_counter	1

		outer.v_counter	2

		inner.v_counter	2

outer.v_counter	3

		outer.v_counter	1

		inner.v_counter	1

		outer.v_counter	2

		inner.v_counter	2

As	you	can	see,	inside	the	inner	loop,	the	value	of	the	v_counter	from	the	outer	loop
is	not	available	when	it	is	referenced	without	the	loop	label.	In	this	example,	the	same
name	for	two	different	loop	counters	is	used	to	demonstrate	another	use	of	loop	labels.

However,	it	is	not	considered	a	good	programming	practice	to	use	the	same	name	for
different	variables.

Summary
In	Chapter	6,	you	began	exploring	the	various	types	of	loops	supported	in	PL/SQL.	In	this
chapter,	you	continued	this	exploration	by	learning	about	additional	loop	features
introduced	in	Oracle	11g.	You	also	discovered	about	how	various	loop	types	may	be
nested	inside	one	another.	Finally,	you	learned	how	loop	labels	may	be	used	to	improve
code	readability	and	maintainability	when	working	with	nested	loops.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

8.	Error	Handling	and	Built-in	Exceptions

In	this	chapter,	you	will	learn	about

	Handling	Errors

	Built-in	Exceptions

In	Chapter	1,	you	encountered	two	types	of	errors	that	can	be	found	in	a	program:
compilation	errors	and	runtime	errors.	You	also	learned	that	a	special	section	in	a	PL/SQL
block	handles	runtime	errors.	In	this	so-called	exception-handling	section,	runtime	errors
are	referred	to	as	exceptions.	The	exception-handling	section	allows	programmers	to
specify	which	actions	should	be	taken	when	a	specific	exception	occurs.

In	PL/SQL,	there	are	two	types	of	exceptions:	built-in	exceptions	and	user-defined
exceptions.	In	this	chapter,	you	will	learn	how	to	handle	certain	kinds	of	runtime	errors
with	the	help	of	built-in	exceptions.	User-defined	exceptions	are	discussed	in	Chapters	9
and	10.

Lab	8.1:	Handling	Errors

After	this	lab,	you	will	be	able	to

	Understand	the	Importance	of	Error	Handling

The	following	example	illustrates	some	of	the	differences	between	compilation	and
runtime	errors:

For	Example		ch08_1a.sql
Click	here	to	view	code	image

DECLARE

		v_num1			INTEGER	:=	&sv_num1;

		v_num2			INTEGER	:=	&sv_num2;

		v_result	NUMBER;

BEGIN

		v_result	=	v_num1	/	v_num2;

		DBMS_OUTPUT.PUT_LINE	(‘v_result:	‘||v_result);

END;

This	example	is	a	very	simple	program	in	which	there	are	two	variables,	v_num1	and
v_num2.	A	user	supplies	values	for	these	variables.	Next,	v_num1	is	divided	by
v_num2,	and	the	result	of	this	division	is	stored	in	the	third	variable,	v_result.	Finally,
the	value	of	the	variable	v_result	is	displayed	on	the	screen.

Now,	assume	that	a	user	supplies	values	of	3	and	5	for	the	variables	v_num1	and
v_num2,	respectively.	As	a	result,	the	example	produces	the	following	output:
Click	here	to	view	code	image

ORA-06550:	line	6,	column	13:

PLS-00103:	Encountered	the	symbol	“=”	when	expecting	one	of	the	following:

		:=	.	(@	%	;

The	symbol	“:=	was	inserted	before	“=”	to	continue.

You	probably	noticed	that	the	script	did	not	execute	successfully.	A	syntax	error	was
encountered	at	line	6.	Close	inspection	of	the	example	shows	that	the	statement

v_result	=	v_num1	/	v_num2;

contains	an	equal	sign	operator	where	an	assignment	operator	should	be	used.	The
statement	should	be	rewritten	as	follows:

v_result	:=	v_num1	/	v_num2;

Once	the	corrected	example	is	run	again,	the	following	output	is	produced:
v_result:	.6

The	example	now	executes	successfully	because	the	syntax	error	has	been	corrected.

Next,	if	you	change	the	values	of	the	variables	v_num1	and	v_num2	to	4	and	0,
respectively,	the	following	output	is	produced:
Click	here	to	view	code	image

ORA-01476:	divisor	is	equal	to	zero

ORA-06512:	at	line	6

01476.	00000	-		“divisor	is	equal	to	zero”

Even	though	this	example	does	not	contain	syntax	errors,	the	script	terminated
prematurely	because	the	value	entered	for	v_num2,	the	divisor,	was	0.	Division	by	0	is
undefined,	so	this	operation	leads	to	an	error.

This	example	illustrates	a	runtime	error	that	cannot	be	detected	by	the	compiler.	In	other
words,	for	some	of	the	values	entered	for	the	variables	v_num1	and	v_num2,	this
example	executes	successfully.	When	other	values	are	entered	for	v_num1	and	v_num2,
this	example	cannot	execute.	As	a	result,	a	runtime	error	occurs.	Recall	that	the	compiler
cannot	detect	runtime	errors.	In	this	case,	a	runtime	error	occurs	because	the	compiler
does	not	know	the	result	of	the	division	of	v_num1	by	v_num2.	This	result	can	be
determined	only	at	run	time—hence,	this	error	is	referred	to	as	a	runtime	error.

To	handle	this	type	of	error	in	the	program,	an	exception	handler	must	be	added.	The
exception-handling	section	has	the	structure	shown	in	Listing	8.1.

Listing	8.1	Exception-Handling	Section
Click	here	to	view	code	image

EXCEPTION

		WHEN	EXCEPTION_NAME

		THEN

				ERROR-PROCESSING	STATEMENTS;

Note	that	the	exception-handling	section	appears	after	the	executable	section	of	the
block.	Therefore,	the	preceding	example	can	be	rewritten	in	the	following	manner	(newly
added	statements	are	shown	in	bold):

For	Example		ch08_1b.sql
Click	here	to	view	code	image

DECLARE

		v_num1			INTEGER	:=	&sv_num1;

		v_num2			INTEGER	:=	&sv_num2;

		v_result	NUMBER;

BEGIN

		v_result	:=	v_num1	/	v_num2;

		DBMS_OUTPUT.PUT_LINE	(‘v_result:	‘||v_result);

EXCEPTION

		WHEN	ZERO_DIVIDE

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘A	number	cannot	be	divided	by	zero.’);

END;

The	section	of	the	example	in	bold	shows	the	exception-handling	section	of	the	block.
When	this	version	of	the	example	is	executed	with	values	of	4	and	0	for	variables
v_num1	and	v_num2,	respectively,	the	following	output	is	produced:
Click	here	to	view	code	image

A	number	cannot	be	divided	by	zero.

This	output	shows	that	once	an	attempt	to	divide	v_num1	by	v_num2	was	made,	the
exception-handling	section	of	the	block	was	executed.	Therefore,	the	error	message
specified	by	the	exception-handling	section	was	displayed	on	the	screen.

This	version	of	the	output	illustrates	several	of	the	advantages	that	arise	from	use	of	an
exception-handling	section.	You	probably	noticed	that	the	output	looks	cleaner	compared
to	the	previous	version.	Even	though	the	error	message	is	still	displayed	on	the	screen,	the
output	is	more	informative.	In	short,	it	is	oriented	more	toward	a	user	than	a	programmer.

Watch	Out!

On	many	occasions,	a	user	does	not	have	access	to	the	code.	Therefore,
references	to	line	numbers	and	keywords	in	a	program	are	not	significant	to
most	users.

An	exception-handling	section	allows	a	program	to	execute	to	completion,	instead	of
terminating	prematurely.	It	also	provides	for	isolation	of	error-handling	routines.	In	other
words,	all	error-processing	code	for	a	specific	block	can	be	placed	within	a	single	section.
As	a	result,	the	logic	of	the	program	becomes	easier	to	follow	and	understand.	Finally,
adding	an	exception-handling	section	enables	event-driven	processing	of	errors.	As	in	the
example	shown	earlier,	when	a	specific	exception	event	occurs,	such	as	division	by	0,	the
exception-handling	section	executes,	and	the	error	message	specified	by	the
DBMS_OUTPUT.PUT_LINE	statement	is	displayed	on	the	screen.

Lab	8.2:	Built-in	Exceptions

After	this	lab,	you	will	be	able	to

	Use	Built-in	Exceptions

As	mentioned	earlier,	a	PL/SQL	block	has	the	structure	shown	in	Listing	8.2.

Listing	8.2	PL/SQL	Block	Structure
Click	here	to	view	code	image

DECLARE

		…

BEGIN

		EXECUTABLE	STATEMENTS;

EXCEPTION

		WHEN	EXCEPTION_NAME

		THEN

				ERROR-PROCESSING	STATEMENTS;

END;

When	an	error	occurs	that	raises	a	built-in	exception,	the	exception	is	said	to	be	raised
implicitly.	In	other	words,	if	a	program	breaks	an	Oracle	rule,	control	passes	to	the
exception-handling	section	of	the	block.	At	this	point,	the	error-processing	statements	are
executed.	After	the	exception-handling	section	of	the	block	has	executed,	the	block
terminates;	that	is,	control	does	not	return	to	the	executable	section	of	the	block.	The
following	example	illustrates	this	point:

For	Example		ch08_2a.sql
Click	here	to	view	code	image

DECLARE

		v_student_name	VARCHAR2(50);

BEGIN

		SELECT	first_name||’	‘||last_name

				INTO	v_student_name

				FROM	student

			WHERE	student_id	=	101;

			DBMS_OUTPUT.PUT_LINE	(‘Student	name	is	‘||v_student_name);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	such	student’);

END;

This	example	produces	the	following	output:
There	is	no	such	student

Because	there	is	no	record	in	the	STUDENT	table	with	student	ID	101,	the	SELECT
INTO	statement	does	not	return	any	rows.	As	a	result,	control	passes	to	the	exception-
handling	section	of	the	block,	and	the	error	message	“There	is	no	such	student”	is
displayed	on	the	screen.	Even	though	a	DBMS_OUTPUT.PUT_LINE	statement	appears
right	after	the	SELECT	INTO	statement,	it	will	not	be	executed	because	control	has	been
transferred	to	the	exception-handling	section.	Control	will	never	return	to	the	executable
section	of	this	block,	which	contains	the	first	DBMS_OUTPUT.PUT_LINE	statement.

While	every	Oracle	runtime	error	has	a	number	associated	with	it,	it	must	be	handled	by
its	name	in	the	exception-handling	section.	One	of	the	outputs	from	the	example	used	in
the	previous	lab	of	this	chapter	included	the	following	error	message:
Click	here	to	view	code	image

ORA-01476:	divisor	is	equal	to	zero

where	ORA-01476	stands	for	the	error	number.	This	error	number	refers	to	the	error
named	ZERO_DIVIDE.	Some	common	Oracle	runtime	errors	are	predefined	in	PL/SQL
as	exceptions.	The	following	list	identifies	some	of	these	predefined	exceptions	and
explains	how	they	are	raised:

	NO_DATA_FOUND:	This	exception	is	raised	when	a	SELECT	INTO	statement	that
makes	no	calls	to	group	functions,	such	as	SUM	or	COUNT,	does	not	return	any	rows.
For	example,	suppose	you	issue	a	SELECT	INTO	statement	against	the	STUDENT
table	where	the	student	ID	equals	101.	If	no	record	in	the	STUDENT	table	meets	this
criterion	(student	ID	equals	101),	the	NO_DATA_FOUND	exception	is	raised.

When	a	SELECT	INTO	statement	calls	a	group	function,	such	as	COUNT,	the
result	set	is	never	empty.	When	used	in	a	SELECT	INTO	statement	against	the
STUDENT	table,	function	COUNT	will	return	0	for	the	value	of	student	ID	123.
Hence,	a	SELECT	INTO	statement	that	calls	a	group	function	will	never	raise	the
NO_DATA_FOUND	exception.

	TOO_MANY_ROWS:	This	exception	is	raised	when	a	SELECT	INTO	statement
returns	more	than	one	row.	By	definition,	a	SELECT	INTO	can	return	only	a	single
row.	If	a	SELECT	INTO	statement	returns	more	than	one	row,	the	definition	of	the
SELECT	INTO	statement	is	violated.	This	causes	the	TOO_MANY_ROWS	exception
to	be	raised.

For	example,	you	issue	a	SELECT	INTO	statement	against	the	STUDENT	table
for	a	specific	ZIP	code.	It	is	highly	likely	that	this	SELECT	INTO	statement	will
return	more	than	one	row,	because	many	students	may	live	in	the	same	ZIP	code
area.

	ZERO_DIVIDE:	This	exception	is	raised	when	a	division	operation	is	performed	in
the	program	and	a	divisor	is	equal	to	zero.	An	example	in	the	previous	lab	of	this
chapter	illustrates	how	this	exception	is	raised.

	LOGIN_DENIED:	This	exception	is	raised	when	a	user	is	trying	to	log	in	to	Oracle
with	an	invalid	username	or	password.

	PROGRAM_ERROR:	This	exception	is	raised	when	a	PL/SQL	program	has	an
internal	problem.

	VALUE_ERROR:	This	exception	is	raised	when	a	conversion	or	size	mismatch	error
occurs.	For	example,	suppose	you	select	a	student’s	last	name	into	a	variable	that	has
been	defined	as	VARCHAR2(5).	If	the	student’s	last	name	contains	more	than	five
characters,	the	VALUE_ERROR	exception	is	raised.

	DUP_VALUE_ON_INDEX:	This	exception	is	raised	when	a	program	tries	to	store	a
duplicate	value	in	a	column	or	columns	that	have	a	unique	index	defined	on	them.
For	example,	suppose	you	are	trying	to	insert	a	record	into	the	SECTION	table	for
the	course	number	25,	section	1.	If	a	record	for	the	given	course	and	section	number
already	exists	in	the	SECTION	table,	the	DUP_VAL_ON_INDEX	exception	is	raised
because	these	columns	have	a	unique	index	defined	on	them.

So	far,	you	have	seen	examples	of	programs	that	are	able	to	handle	a	single	exception

only.	For	example,	a	PL/SQL	block	contains	an	exception	handler	with	a	single	exception
ZERO_DIVIDE.	However,	many	times	you	need	to	handle	different	exceptions	in	the
PL/SQL	block.	Moreover,	often	you	need	to	specify	different	actions	that	must	be	taken
when	a	particular	exception	is	raised,	as	the	following	example	illustrates:

For	Example		ch08_3a.sql
Click	here	to	view	code	image

DECLARE

		v_student_id	NUMBER						:=	&sv_student_id;

		v_enrolled			VARCHAR2(3)	:=	‘NO’;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Check	if	the	student	is	enrolled’);

		SELECT	‘YES’

				INTO		v_enrolled

				FROM		enrollment

			WHERE		student_id	=	v_student_id;

			DBMS_OUTPUT.PUT_LINE	(‘The	student	is	enrolled	into	one	course’);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘The	student	is	not	enrolled’);

		WHEN	TOO_MANY_ROWS

		THEN

					DBMS_OUTPUT.PUT_LINE	(‘The	student	is	enrolled	in	multiple	courses’);

END;

This	example	contains	two	exceptions	in	a	single	exception-handling	section.	The	first
exception,	NO_DATA_FOUND,	will	be	raised	if	there	are	no	records	in	the	ENROLLMENT
table	for	a	particular	student.	The	second	exception,	TOO_MANY_ROWS,	will	be	raised	if	a
particular	student	is	enrolled	in	more	than	one	course.

Consider	what	happens	if	you	run	this	example	for	three	different	values	of	student	ID:
102,	103,	and	319.	In	the	first	run,	when	the	student	ID	is	102,	the	example	produces	the
following	output:
Click	here	to	view	code	image

Check	if	the	student	is	enrolled

The	student	is	enrolled	in	multiple	courses

In	this	case,	the	first	DBMS_OUTPUT.PUT_LINE	statement	is	executed,	and	the	message
“Check	if	the	…”	is	displayed	on	the	screen.	Then	the	SELECT	INTO	statement	is
executed.	You	have	probably	noticed	that	the	DBMS_OUTPUT.PUT_LINE	statement
following	the	SELECT	INTO	statement	was	not	executed.	When	the	SELECT	INTO
statement	is	executed	for	student	ID	102,	multiple	rows	are	returned.	Because	the
SELECT	INTO	statement	can	return	only	a	single	row,	control	is	passed	to	the	exception-
handling	section	of	the	block.	Next,	the	PL/SQL	block	raises	the	proper	exception.	As	a
result,	the	message	“The	student	is	enrolled	in	multiple	courses”	is	displayed	on	the
screen;	this	message	is	specified	by	the	exception	TOO_MANY_ROWS.

Did	You	Know?

That	built-in	exceptions	are	raised	implicitly.	Therefore,	you	need	to	specify
only	which	action	must	be	taken	in	the	case	of	a	particular	exception.

In	the	second	run,	when	the	student	ID	is	103,	the	example	produces	different	output:
Click	here	to	view	code	image

Check	if	the	student	is	enrolled

The	student	is	enrolled	into	one	course

For	this	run,	the	first	DBMS_OUTPUT.PUT_LINE	statement	is	executed,	and	the	message
“Check	if	the	…”	is	displayed	on	the	screen.	Then	the	SELECT	INTO	statement	is
executed.	When	the	SELECT	INTO	statement	is	executed	for	student	ID	103,	a	single
row	is	returned.	Next,	the	DBMS_OUTPUT.PUT_LINE	statement	following	the	SELECT
INTO	statement	is	executed.	As	a	result,	the	message	“The	student	is	enrolled	into	one
course”	is	displayed	on	the	screen.	Notice	that	for	this	value	of	the	variable
v_student_id,	no	exception	has	been	raised.

In	the	third	run,	when	the	student	ID	is	319,	the	example	produces	the	following	output:
Click	here	to	view	code	image

Check	if	the	student	is	enrolled

The	student	is	not	enrolled

Just	as	in	the	previous	runs,	the	first	DBMS_OUTPUT.PUT_LINE	statement	is	executed,
and	the	message	“Check	if	the	…”	is	displayed	on	the	screen.	Then	the	SELECT	INTO
statement	is	executed.	When	the	SELECT	INTO	statement	is	executed	for	student	ID
319,	no	rows	are	returned.	As	a	result,	control	passes	to	the	exception-handling	section	of
the	PL/SQL	block,	and	the	proper	exception	is	raised.	In	this	case,	the	NO_DATA_FOUND
exception	is	raised	because	the	SELECT	INTO	statement	failed	to	return	a	single	row.
Thus,	the	message	“The	student	is	not	enrolled”	is	displayed	on	the	screen.

So	far,	you	have	seen	examples	of	exception-handling	sections	that	have	particular
exceptions,	such	as	NO_DATA_FOUND	and	ZERO_DIVIDE.	However,	you	cannot	always
predict	beforehand	which	exception	might	be	raised	by	a	PL/SQL	block.	In	cases	like	this,
a	special	exception	handler	called	OTHERS	is	used.	All	predefined	Oracle	errors
(exceptions)	can	be	handled	with	the	use	of	the	OTHERS	handler.

Consider	the	following	example:

For	Example		ch08_4a.sql
Click	here	to	view	code	image

DECLARE

		v_instructor_id			NUMBER	:=	&sv_instructor_id;

		v_instructor_name	VARCHAR2(50);

BEGIN

		SELECT	first_name||’	‘||last_name

				INTO	v_instructor_name

				FROM	instructor

			WHERE	instructor_id	=	v_instructor_id;

			DBMS_OUTPUT.PUT_LINE	(‘Instructor	name	is	‘||v_instructor_name);

EXCEPTION

		WHEN	OTHERS

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

END;

When	a	value	of	100	is	provided	at	run	time	for	the	variable	v_instructor_id,	this
example	produces	the	following	output:

An	error	has	occurred

This	example	demonstrates	not	only	the	use	of	the	OTHERS	exception	handler,	but	also
a	bad	programming	practice.	The	exception	OTHERS	has	been	raised	because	there	is	no
record	in	the	INSTRUCTOR	table	for	instructor	ID	100.

This	is	a	simple	example,	where	it	is	possible	to	guess	which	exception	handlers	should
be	used.	In	many	instances,	however,	you	may	find	a	number	of	programs	that	have	been
written	with	a	single	exception	handler,	OTHERS.	This	is	a	bad	programming	practice,
because	such	use	of	this	exception	handler	does	not	give	you	or	your	user	detailed
feedback.	You	do	not	really	know	which	error	has	occurred,	and	your	user	does	not	know
whether	he	or	she	entered	some	information	incorrectly.	Other	special	error-reporting
functions,	SQLCODE	and	SQLERRM,	are	very	useful	when	used	with	the	OTHERS	handler
that	provide	more	details.	You	will	learn	about	them	in	Chapter	10.

Summary
In	this	chapter,	you	began	exploring	the	concepts	of	error	handling	and	built-in	exceptions
supported	in	PL/SQL.	In	the	next	two	chapters,	you	will	continue	learning	about
exceptions,	their	scope	and	propagation,	and	ways	to	define	your	own	exceptions.	Finally,
in	Chapter	24,	you	will	discover	how	to	produce	meaningful	error	reporting	within	your
code	with	the	help	of	Oracle’s	built-in	packages	DBMS_UTILITY	and
UTL_CALLSTACK.	You	will	also	see	why	the	UTL_CALLSTACK	package	introduced	in
Oracle	12c	is	a	better	alternative	when	it	comes	to	error	reporting.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

9.	Exceptions

In	this	chapter,	you	will	learn	about

	Exception	Scope

	User-Defined	Exceptions

	Exception	Propagation

In	Chapter	8,	you	explored	the	concept	of	error	handling	and	built-in	exceptions.	In	this
chapter	you	will	continue	that	exploration	by	examining	whether	an	exception	can	catch	a
runtime	error	occurring	in	the	declaration,	executable,	or	exception-handling	section	of	a
PL/SQL	block.	You	will	also	learn	how	to	define	your	own	exceptions	and	how	to	re-raise
an	exception.

Lab	9.1:	Exception	Scope

After	this	lab,	you	will	be	able	to

	Understand	the	Scope	of	an	Exception

You	are	already	familiar	with	the	term	scope—for	example,	the	scope	of	a	variable.	Even
though	variables	and	exceptions	serve	different	purposes,	the	same	scope	rules	apply	to
them.	These	rules	are	best	illustrated	by	means	of	an	example.

For	Example		ch09_1a.sql
Click	here	to	view	code	image

DECLARE

		v_student_id	NUMBER	:=	&sv_student_id;

		v_name							VARCHAR2(30);

BEGIN

		SELECT	RTRIM(first_name)||’	‘||RTRIM(last_name)

				INTO	v_name

				FROM	student

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name	is	‘||v_name);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	such	student’);

END;

In	this	example,	student’s	name	is	displayed	on	the	screen	for	a	given	value	of	student
ID	provided	at	run	time.	If	there	is	no	record	in	the	STUDENT	table	corresponding	to	the
value	of	v_student_id,	the	exception	NO_DATA_FOUND	is	raised.	Therefore,	you	can
say	that	the	exception	NO_DATA_FOUND	covers	this	block,	or	that	this	block	is	the	scope
of	this	exception.	In	other	words,	the	scope	of	an	exception	is	the	portion	of	the	block	that
is	covered	by	this	exception.

Now,	you	can	expand	on	that	understanding	(newly	added	statements	are	shown	in
bold):

For	Example		ch09_1b.sql
Click	here	to	view	code	image

<<outer_block>>

DECLARE

		v_student_id	NUMBER	:=	&sv_student_id;

		v_name							VARCHAR2(30);

		v_total						NUMBER(1);

BEGIN

		SELECT	RTRIM(first_name)||’	‘||RTRIM(last_name)

				INTO	v_name

				FROM	student

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name	is	‘||v_name);

		<<inner_block>>

		BEGIN

				SELECT	COUNT(*)

						INTO	v_total

						FROM	enrollment

					WHERE	student_id	=	v_student_id;

				DBMS_OUTPUT.PUT_LINE	(‘Student	is	registered	for	‘||v_total||’

course(s)’);

		EXCEPTION

				WHEN	VALUE_ERROR	OR	INVALID_NUMBER

				THEN

						DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

		END;

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	such	student’);

END;

The	new	version	of	the	example	includes	an	inner	block.	This	block	has	a	structure
similar	to	the	outer	block;	that	is,	it	has	a	SELECT	INTO	statement	and	an	exception
section	to	handle	errors.	When	a	VALUE_ERROR	or	INVALID_NUMBER	error	occurs	in
the	inner	block,	the	exception	is	raised.

Notice	that	the	exceptions	VALUE_ERROR	and	INVALID_NUMBER	have	been	defined
for	the	inner	block	only.	Therefore,	they	can	be	handled	only	if	they	are	raised	in	the	inner
block.	If	one	of	these	errors	occurs	in	the	outer	block,	the	program	will	be	unable	to
terminate	successfully.

In	contrast,	the	exception	NO_DATA_FOUND	has	been	defined	in	the	outer	block;
therefore,	it	is	global	to	the	inner	block.	However,	this	version	of	the	example	never	raises
the	exception	NO_DATA_FOUND	in	the	inner	block.	Why	do	you	think	this	is	the	case?

Did	You	Know?

If	you	define	an	exception	in	a	block,	it	is	local	to	that	block.	However,	it	is
global	to	any	blocks	enclosed	by	that	block.	In	other	words,	in	the	case	of
nested	blocks,	any	exception	defined	in	the	outer	block	becomes	global	to	its
inner	blocks.

Note	what	happens	when	the	example	is	changed	so	that	the	exception
NO_DATA_FOUND	can	be	raised	by	the	inner	block	(all	changes	are	shown	in	bold).

For	Example		ch09_1c.sql
Click	here	to	view	code	image

<<outer_block>>

DECLARE

		v_student_id	NUMBER	:=	&sv_student_id;

		v_name							VARCHAR2(30);

		v_registered	CHAR;

BEGIN

		SELECT	RTRIM(first_name)||’	‘||RTRIM(last_name)

				INTO	v_name

				FROM	student

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name	is	‘||v_name);

		<<inner_block>>

		BEGIN

				SELECT	‘Y’

						INTO	v_registered

						FROM	enrollment

					WHERE	student_id	=	v_student_id;

				DBMS_OUTPUT.PUT_LINE	(‘Student	is	registered’);

		EXCEPTION

				WHEN	VALUE_ERROR	OR	INVALID_NUMBER

				THEN

						DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

		END;

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘There	is	no	such	student’);

END;

The	new	version	of	the	example	has	a	different	SELECT	INTO	statement.	To	answer
the	question	posed	earlier,	the	exception	NO_DATA_FOUND	can	be	raised	by	the	inner
block	because	the	SELECT	INTO	statement	does	not	contain	a	group	function,
COUNT().	This	function	always	returns	a	result,	so	when	no	rows	are	returned	by	the
SELECT	INTO	statement,	the	value	returned	by	the	COUNT(*)	equals	zero.

Now,	consider	the	output	produced	by	this	example	when	a	value	of	284	is	provided	for
the	student	ID:
Click	here	to	view	code	image

Student	name	is	Salewa	Lindeman

There	is	no	such	student

You	have	probably	noticed	that	this	example	produces	only	a	partial	output.	Even
though	you	are	able	to	see	the	student’s	name,	the	error	message	is	displayed,	indicating
that	this	student	does	not	exist.	This	error	message	is	displayed	because	the	exception
NO_DATA_FOUND	is	raised	in	the	inner	block.

The	SELECT	INTO	statement	of	the	outer	block	returns	the	student’s	name,	which	is
then	displayed	on	the	screen	by	the	first	DBMS_OUTPUT.PUT_LINE	statement.	Next,
control	passes	to	the	inner	block.	The	SELECT	INTO	statement	of	the	inner	block	does
not	return	any	rows.	As	a	result,	an	error	occurs	and	the	NO_DATA_FOUND	exception	is
raised.

Next,	PL/SQL	tries	to	find	a	handler	for	the	NO_DATA_FOUND	exception	in	the	inner
block.	Because	there	is	no	such	handler	in	the	inner	block,	control	is	transferred	to	the
exception	section	of	the	outer	block.	The	exception	section	of	the	outer	block	contains	the
handler	for	the	exception	NO_DATA_FOUND.	Consequently,	this	handler	executes,	and	the
message	“There	is	no	such	student”	is	displayed	on	the	screen.	The	process,	which	is
called	exception	propagation,	is	discussed	in	detail	in	Lab	9.3.

Be	aware	that	this	example	has	been	provided	for	illustrative	purposes	only.	In	its
current	version,	it	is	not	very	useful.	The	SELECT	INTO	statement	of	the	inner	block	is
prone	to	another	exception,	TOO_MANY_ROWS,	which	is	not	handled	by	this	example.	In
addition,	the	error	message	“There	is	no	such	student”	is	not	very	descriptive	when	the
exception	NO_DATA_FOUND	is	raised	by	the	inner	block.

Lab	9.2:	User-Defined	Exceptions

After	this	lab,	you	will	be	able	to

	Use	User-Defined	Exceptions

Often	in	your	programs,	you	may	need	to	handle	problems	that	are	specific	to	the	program
you	write.	For	example,	suppose	your	program	asks	a	user	to	enter	a	value	for	the	student
ID.	This	value	is	then	assigned	to	the	variable	v_student_id,	which	is	used	later	in	the
program.	Generally,	you	want	a	positive	number	for	an	ID.	By	mistake,	however,	the	user
enters	a	negative	number.	However,	no	error	has	occurred	because	the	variable
v_student_id	has	been	defined	as	a	number,	and	the	user	has	supplied	a	legitimate
numeric	value.	Therefore,	you	may	want	to	implement	your	own	exception	to	handle	this
situation.

This	type	of	an	exception	is	called	a	user-defined	exception	because	it	is	defined	by	the
programmer.	As	a	result,	before	such	an	exception	can	be	used,	it	must	be	declared.	A
user-defined	exception	is	declared	in	the	declarative	part	of	a	PL/SQL	block,	as	shown	in
Listing	9.1.

Listing	9.1	User-Defined	Exception	Declaration
DECLARE

		exception_name	EXCEPTION;

Notice	that	this	declaration	looks	similar	to	a	variable	declaration.	That	is,	you	specify	an
exception	name	followed	by	the	keyword	EXCEPTION.

Consider	the	following	code	fragment:

For	Example
DECLARE

		e_invalid_id	EXCEPTION;

In	this	code	fragment,	the	name	of	the	exception	is	prefixed	by	the	letter	“e.”	This	is	not	a
required	syntax;	rather,	it	allows	you	to	differentiate	between	variable	names	and
exception	names.

Once	an	exception	has	been	declared,	the	executable	statements	associated	with	that
exception	are	specified	in	the	exception-handling	section	of	the	block.	The	format	of	the
exception-handling	section	is	the	same	as	for	built-in	exceptions.	Consider	the	following
code	fragment:

For	Example
Click	here	to	view	code	image

DECLARE

		e_invalid_id	EXCEPTION;

BEGIN

		…

EXCEPTION

		WHEN	e_invalid_id

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	ID	cannot	be	negative’);

END;

You	already	know	that	built-in	exceptions	are	raised	implicitly.	In	other	words,	when	a
certain	error	occurs,	a	built-in	exception	associated	with	this	error	is	raised.	Of	course,	you
are	assuming	that	you	have	included	this	exception	in	the	exception-handling	section	of
your	program.	For	example,	a	TOO_MANY_ROWS	exception	is	raised	when	a	SELECT
INTO	statement	returns	multiple	rows.

A	user-defined	exception	must	be	raised	explicitly.	In	other	words,	you	need	to	specify
in	your	program	under	which	circumstances	an	exception	must	be	raised,	as	shown	in
Listing	9.2.

Listing	9.2	Raising	a	User-Defined	Exception
Click	here	to	view	code	image

DECLARE

		exception_name	EXCEPTION;

BEGIN

		…

		IF	CONDITION

					THEN

				RAISE	exception_name;

		END	IF;

		…

EXCEPTION

		WHEN	exception_name

		THEN

				ERROR-PROCESSING	STATEMENTS;

END;

In	this	structure,	the	circumstances	under	which	a	user-defined	exception	must	be	raised
are	determined	with	the	help	of	the	IF	statement.	If	CONDITION	evaluates	to	TRUE,	a
user-defined	exception	is	raised	with	the	help	of	the	RAISE	statement.	If	CONDITION
evaluates	to	FALSE,	the	program	proceeds	with	its	normal	execution.	In	other	words,	the
statements	following	the	IF	statement	are	executed.	Note	that	any	form	of	the	IF
statement	can	be	used	to	check	when	a	user-defined	exception	must	be	raised.

In	the	next	example,	which	is	based	on	the	code	fragments	provided	earlier	in	this	lab,
you	will	see	that	the	exception	e_invalid_id	is	raised	when	the	user	enters	a	negative
number	for	the	variable	v_student_id.

For	Example		ch09_2a.sql
Click	here	to	view	code	image

DECLARE

		v_student_id				STUDENT.STUDENT_ID%TYPE	:=	&sv_student_id;

		v_total_courses	NUMBER;

		e_invalid_id				EXCEPTION;

BEGIN

		IF	v_student_id	<	0

		THEN

				RAISE	e_invalid_id;

		END	IF;

		SELECT	COUNT(*)

				INTO	v_total_courses

				FROM	enrollment

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘The	student	is	registered	for

‘||v_total_courses||’	courses’);

		DBMS_OUTPUT.PUT_LINE	(‘No	exception	has	been	raised’);

EXCEPTION

		WHEN	e_invalid_id

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	ID	cannot	be	negative’);

END;

In	this	example,	the	exception	e_invalid_id	is	raised	with	the	help	of	the	IF
statement.	Once	a	value	is	supplied	for	the	variable	v_student_id,	the	sign	of	this
numeric	value	is	checked.	If	the	value	is	less	than	zero,	the	IF	statement	evaluates	to
TRUE	and	the	exception	e_invalid_id	is	raised.	In	turn,	control	passes	to	the
exception-handling	section	of	the	block.	Next,	statements	associated	with	this	exception
are	executed.	In	this	case,	the	message	“An	ID	cannot	be	negative”	is	displayed	on	the
screen.	If	the	value	entered	for	the	v_student_id	is	positive,	the	IF	statement	yields
FALSE	and	the	rest	of	the	statements	in	the	body	of	the	block	are	executed.

Consider	executing	this	example	for	two	values	of	v_student_id,	102	and	–102.
The	first	run	of	the	example	(the	student	ID	is	102)	produces	the	following	output:
Click	here	to	view	code	image

The	student	is	registered	for	2	courses

No	exception	has	been	raised

For	this	run,	the	user	provides	a	positive	value	for	the	variable	v_student_id.	As	a
result,	the	IF	statement	evaluates	to	FALSE,	and	the	SELECT	INTO	statement
determines	how	many	records	are	in	the	ENROLLMENT	table	for	the	given	student	ID.
Next,	the	messages	“The	student	is	registered	for	2	courses”	and	“No	exception	has	been
raised”	are	displayed	on	the	screen.	At	this	point,	the	body	of	the	PL/SQL	block	has
executed	to	completion.

A	second	run	of	the	example	(the	student	ID	is	–102)	produces	the	following	output:
An	ID	cannot	be	negative

For	this	run,	the	user	entered	a	negative	value	for	the	variable	v_student_id.	The	IF
statement	evaluates	to	TRUE	and	the	exception	e_invalid_id	is	raised.	As	a	result,
control	of	the	execution	passes	to	the	exception-handling	section	of	the	block,	and	the
message	“An	ID	cannot	be	negative”	is	displayed	on	the	screen.

Watch	Out!

The	RAISE	statement	should	be	used	in	conjunction	with	an	IF	statement.
Otherwise,	control	of	the	execution	will	be	transferred	to	the	exception-
handling	section	of	the	block	for	every	single	execution.	Consider	the
following	example:
Click	here	to	view	code	image

DECLARE

		e_test_exception	EXCEPTION;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Exception	has	not	been	raised’);

		RAISE	e_test_exception;

		DBMS_OUTPUT.PUT_LINE	(‘Exception	has	been	raised’);

EXCEPTION

		WHEN	e_test_exception

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

END;

Every	time	this	example	is	run,	the	following	output	is	produced:
Click	here	to	view	code	image

Exception	has	not	been	raised

An	error	has	occurred

Even	though	no	error	has	occurred,	control	is	transferred	to	the	exception-
handling	section.	It	is	important	for	you	to	check	whether	the	error	has
occurred	before	raising	the	exception	associated	with	that	error.

The	same	scope	rules	apply	to	user-defined	exceptions	as	apply	to	built-in	exceptions.
An	exception	declared	in	the	inner	block	must	be	raised	in	the	inner	block	and	defined	in
the	exception-handling	section	of	the	inner	block.	Consider	the	following	example:

For	Example		ch09_3a.sql
Click	here	to	view	code	image

<<outer_block>>

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Outer	block’);

		<<inner_block>>

		DECLARE

				e_my_exception	EXCEPTION;

		BEGIN

				DBMS_OUTPUT.PUT_LINE	(‘Inner	block’);

		EXCEPTION

				WHEN	e_my_exception

				THEN

						DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

		END;

		IF	10	>	&sv_number

		THEN

				RAISE	e_my_exception;

		END	IF;

END;

In	this	example,	the	exception,	e_my_exception,	has	been	declared	in	the	inner
block.	However,	you	are	trying	to	raise	this	exception	in	the	outer	block.	This	example
causes	a	syntax	error	because	the	exception	declared	in	the	inner	block	ceases	to	exist
once	the	inner	block	terminates.	As	a	result,	this	example	produces	the	following	output
when	a	value	of	11	is	provided	at	run	time:
Click	here	to	view	code	image

ORA-06550:	line	19,	column	13:

PLS-00201:	identifier	‘E_MY_EXCEPTION’	must	be	declared

ORA-06550:	line	19,	column	7:

PL/SQL:	Statement	ignored

Notice	that	the	error	message
Click	here	to	view	code	image

PLS-00201:	identifier	‘E_MY_EXCEPTION’	must	be	declared

is	the	same	error	message	you	get	when	you	try	to	use	a	variable	that	has	not	been
declared.

Lab	9.3:	Exception	Propagation

After	this	lab,	you	will	be	able	to

	Understand	How	Exceptions	Propagate

	Re-raise	Exceptions

You	already	have	seen	how	different	types	of	exceptions	are	raised	when	a	runtime	error
occurs	in	the	executable	portion	of	the	PL/SQL	block.	However,	a	runtime	error	may	also
occur	in	the	declaration	section	of	the	block	or	in	the	exception-handling	section	of	the
block.	The	rules	that	govern	how	exceptions	are	raised	in	these	situations	are	referred	to	as
exception	propagation.

Consider	the	first	case,	in	which	a	runtime	error	occurs	in	the	executable	section	of	the

PL/SQL	block.	This	case	should	be	treated	as	a	review	because	the	examples	given	earlier
in	this	chapter	show	how	an	exception	is	raised	when	an	error	occurs	in	the	executable
section	of	the	block.

If	a	specific	exception	is	associated	with	a	particular	error,	control	passes	to	the
exception-handling	section	of	the	block.	Once	the	statements	associated	with	the
exception	are	executed,	control	passes	to	the	host	environment	or	to	the	enclosing	block.	If
there	is	no	exception	handler	for	this	error,	the	exception	is	propagated	to	the	enclosing
block	(outer	block).	The	steps	just	described	are	then	repeated.	If	no	exception	handler	is
found,	the	execution	of	the	program	halts,	and	control	is	transferred	to	the	host
environment.

Next,	consider	the	second	case,	in	which	a	runtime	error	occurs	in	the	declaration
section	of	the	block.	If	there	is	no	outer	block,	the	execution	of	the	program	halts,	and
control	passes	to	the	host	environment.	Consider	the	following	example:

For	Example		ch09_4a.sql
Click	here	to	view	code	image

DECLARE

		v_test_var	CHAR(3):=	‘ABCDE’;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘This	is	a	test’);

EXCEPTION

		WHEN	INVALID_NUMBER	OR	VALUE_ERROR

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

END;

When	executed,	this	example	produces	the	following	output:
Click	here	to	view	code	image

ORA-06502:	PL/SQL:	numeric	or	value	error:	character	string	buffer	too

small

ORA-06512:	at	line	2

In	this	example,	the	assignment	statement	in	the	declaration	section	of	the	block	causes
an	error.	Even	though	an	exception	handler	for	this	error	exists,	the	block	is	not	able	to
execute	successfully.	Based	on	this	example,	you	can	conclude	that	when	a	runtime	error
occurs	in	the	declaration	section	of	the	PL/SQL	block,	the	exception-handling	section	of
this	block	is	not	able	to	catch	the	error.

Next,	consider	a	modified	version	of	the	same	example	that	employs	nested	PL/SQL
blocks	(changes	are	shown	in	bold).

For	Example		ch09_4b.sql
Click	here	to	view	code	image

<<outer_block>>

BEGIN

		<<inner_block>>

		DECLARE

				v_test_var	CHAR(3):=	‘ABCDE’;

		BEGIN

				DBMS_OUTPUT.PUT_LINE	(‘This	is	a	test’);

		EXCEPTION

				WHEN	INVALID_NUMBER	OR	VALUE_ERROR

				THEN

						DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred	in	the	inner	block’);

		END;

EXCEPTION

		WHEN	INVALID_NUMBER	OR	VALUE_ERROR

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred	in	the	program’);

END;

When	executed,	this	example	produces	the	following	output:
Click	here	to	view	code	image

An	error	has	occurred	in	the	program

In	this	version	of	the	example,	the	PL/SQL	block	is	enclosed	by	another	block,	and	the
program	is	able	to	complete.	In	this	case,	the	exception	defined	in	the	outer	block	is	raised
when	the	error	occurs	in	the	declaration	section	of	the	inner	block.	Therefore,	you	can
conclude	that	when	a	runtime	error	occurs	in	the	declaration	section	of	the	inner	block,
the	exception	immediately	propagates	to	the	enclosing	(outer)	block.

Finally,	consider	a	third	case,	in	which	a	runtime	error	occurs	in	the	exception-handling
section	of	the	block.	Just	as	in	the	previous	case,	if	there	is	no	outer	block,	the	execution
of	the	program	halts	and	control	passes	to	the	host	environment.	Consider	the	following
example:

For	Example		ch09_5a.sql
Click	here	to	view	code	image

DECLARE

		v_test_var	CHAR(3)	:=	‘ABC’;

BEGIN

		v_test_var	:=	‘1234’;

		DBMS_OUTPUT.PUT_LINE	(‘v_test_var:	‘||v_test_var);

EXCEPTION

		WHEN	INVALID_NUMBER	OR	VALUE_ERROR

		THEN

				v_test_var	:=	‘ABCD’;

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

END;

When	executed,	this	example	produces	the	following	output:
Click	here	to	view	code	image

ORA-06502:	PL/SQL:	numeric	or	value	error:	character	string	buffer	too

small

ORA-06512:	at	line	9

ORA-06502:	PL/SQL:	numeric	or	value	error:	character	string	buffer	too

small

As	you	can	see,	the	assignment	statement	in	the	executable	section	of	the	block	causes
an	error.	In	turn,	control	is	transferred	to	the	exception-handling	section	of	the	block.
However,	the	assignment	statement	in	the	exception-handling	section	of	the	block	raises
the	same	error.	As	a	result,	the	output	of	this	example	displays	the	same	error	message
twice.	The	first	message	is	generated	by	the	assignment	statement	in	the	executable
section	of	the	block,	and	the	second	message	is	generated	by	the	assignment	statement	of

the	exception-handling	section	of	this	block.	Based	on	this	example,	you	can	conclude	that
when	a	runtime	error	occurs	in	the	exception-handling	section	of	the	PL/SQL	block,	the
exception-handling	section	of	this	block	is	not	able	to	prevent	the	error.
Next,	consider	a	modified	version	of	the	same	example	with	nested	PL/SQL	blocks

(affected	statements	are	shown	in	bold):

For	Example		ch09_5b.sql
Click	here	to	view	code	image

<<outer_block>>

BEGIN

		<<inner_block>>

		DECLARE

				v_test_var	CHAR(3)	:=	‘ABC’;

		BEGIN

				v_test_var	:=	‘1234’;

				DBMS_OUTPUT.PUT_LINE	(‘v_test_var:	‘||v_test_var);

		EXCEPTION

				WHEN	INVALID_NUMBER	OR	VALUE_ERROR

				THEN

						v_test_var	:=	‘ABCD’;

						DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred	in	the	inner	block’);

		END;

EXCEPTION

		WHEN	INVALID_NUMBER	OR	VALUE_ERROR

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred	in	the	program’);

END;

When	executed,	this	version	produces	the	following	output:
Click	here	to	view	code	image

An	error	has	occurred	in	the	program

In	this	version	of	the	example,	the	PL/SQL	block	is	enclosed	by	another	block,	and	the
program	is	able	to	complete.	In	this	case,	the	exception	defined	in	the	outer	block	is	raised
when	the	error	occurs	in	the	exception-handling	section	of	the	inner	block.	Therefore,	you
can	conclude	that	when	a	runtime	error	occurs	in	the	exception-handling	section	of	the
inner	block,	the	exception	immediately	propagates	to	the	enclosing	block.

In	the	previous	two	examples,	an	exception	was	raised	implicitly	by	a	runtime	error	in
the	exception-handling	section	of	the	block.	However,	an	exception	can	also	be	raised
explicitly	in	the	exception-handling	section	of	the	block	by	the	RAISE	statement.
Consider	the	following	example:

For	Example		ch09_6a.sql
Click	here	to	view	code	image

<<outer_block>>

DECLARE

		e_exception1	EXCEPTION;

		e_exception2	EXCEPTION;

BEGIN

		<<inner_block>>

		BEGIN

				RAISE	e_exception1;

		EXCEPTION

				WHEN	e_exception1

				THEN

						RAISE	e_exception2;

				WHEN	e_exception2

				THEN

						DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred	in	the	inner	block’);

		END;

EXCEPTION

		WHEN	e_exception2

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred	in	the	program’);

END;

This	example	produces	the	following	output:
Click	here	to	view	code	image

An	error	has	occurred	in	the	program

The	declaration	portion	of	the	block	contains	declarations	of	two	exceptions,
e_exception1	and	e_exception2.	The	exception	e_exception1	is	raised	in	the
inner	block	via	the	RAISE	statement.	In	the	exception-handling	section	of	the	inner	block,
the	exception	e_exception1	tries	to	raise	e_exception2.	Even	though	an	exception
handler	for	e_exception2	exists	in	the	inner	block,	control	is	still	transferred	to	the
outer	block.	This	happens	because	only	one	exception	can	be	raised	in	the	exception-
handling	section	of	the	block.	Only	after	one	exception	has	been	handled	can	another	be
raised,	but	two	or	more	exceptions	cannot	be	raised	simultaneously.	This	flow	of
execution	is	illustrated	in	Figure	9.1.

Figure	9.1	Flow	of	the	Execution	for	Example	ch09_6a.sql

Essentially,	when	the	exception	e_exception2	is	raised	in	the	exception-handling
section	of	the	inner	block,	it	cannot	be	handled	in	the	same	exception-handling	section.
Thus,	the	portion	of	the	code	surrounded	by	rectangular	brackets	never	executes.	Instead,
control	passes	to	the	exception-handling	section	of	the	outer	block	and	the	message	“An
error	has	occurred	in	the	program”	is	displayed	on	the	screen.

Watch	Out!

When	an	exception	is	raised	in	a	PL/SQL	block	that	does	not	have	an
appropriate	exception-handling	mechanism	and	is	not	enclosed	by	another
block,	control	is	transferred	to	the	host	environment,	and	the	program	is	not
able	to	complete	successfully.	The	following	code	fragment	illustrates	this
case:
Click	here	to	view	code	image

DECLARE

		e_exception1	EXCEPTION;

BEGIN

		RAISE	e_exception1;

END;

ORA-06510:	PL/SQL:	unhandled	user-defined	exception

ORA-06512:	at	line	4

Note	that	this	behavior	applies	to	built-in	exceptions	and	was	also	seen	in
Chapter	8.

Re-raising	Exceptions
On	some	occasions	you	may	want	to	be	able	to	stop	your	program	if	a	certain	type	of	error
occurs.	In	other	words,	you	may	want	to	handle	an	exception	in	the	inner	block	and	then
pass	it	to	the	outer	block.	This	process	is	called	re-raising	an	exception.	The	following
example	helps	to	illustrate	this	point:

For	Example		ch09_7a.sql
Click	here	to	view	code	image

<<outer_block>>

DECLARE

		e_exception	EXCEPTION;

BEGIN

		<<inner_block>>

		BEGIN

				RAISE	e_exception;

		EXCEPTION

				WHEN	e_exception

				THEN

						RAISE;

		END;

EXCEPTION

		WHEN	e_exception

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

END;

In	this	example,	the	exception	e_exception	is	first	declared	in	the	outer	block,	then
raised	in	the	inner	block.	As	a	result,	control	is	transferred	to	the	exception-handling
section	of	the	inner	block.	The	RAISE	statement	in	the	exception-handling	section	of	the
block	causes	the	exception	to	propagate	to	the	exception-handling	section	of	the	outer
block.	Notice	that	when	the	RAISE	statement	is	used	in	the	exception-handling	section	of

the	inner	block,	it	is	not	followed	by	the	exception	name.

When	run,	this	example	produces	the	following	output:
An	error	has	occurred

Watch	Out!

When	an	exception	is	re-raised	in	the	block	that	is	not	enclosed	by	any	other
block,	the	program	is	unable	to	complete	successfully.	Consider	the	following
example:

DECLARE

		e_exception	EXCEPTION;

BEGIN

		RAISE	e_exception;

EXCEPTION

		WHEN	e_exception

		THEN

				RAISE;

END;

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

ORA-06510:	PL/SQL:	unhandled	user-defined	exception

ORA-06512:	at	line	7

Summary
In	this	chapter,	you	learned	about	exception	scope	and	propagation,	and	saw	how	to	define
and	raise	your	own	exceptions.	In	addition,	you	learned	how	to	re-raise	an	exception.	In
the	next	chapter,	you	will	discover	how	to	produce	meaningful	error	reporting	within	your
code	with	the	help	of	Oracle’s	built-in	functions,	SQLCODE	and	SQLERRM.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

10.	Exceptions:	Advanced	Concepts

In	this	chapter,	you	will	learn	about

	RAISE_APPLICATION_ERROR

	EXCEPTION_INIT	Pragma

	SQLCODE	and	SQLERRM

In	Chapters	8	and	9,	you	encountered	the	concept	of	error	handling	as	well	as	built-in	and
user-defined	exceptions.	You	also	learned	about	the	rules	that	govern	exception	scope,
propagation,	and	ways	to	re-raise	an	exception.

In	this	chapter	you	will	conclude	your	exploration	of	error	handling	and	exceptions	with
a	study	of	advanced	topics.	After	working	through	this	chapter,	you	will	be	able	to
associate	an	error	number	with	an	error	message,	and	will	be	able	to	trap	a	runtime	error
when	you	have	an	Oracle	error	number	but	no	name	by	which	the	error	can	be	referenced.

Lab	10.1:	RAISE_APPLICATION_ERROR

After	this	Lab,	you	will	be	able	to

	Use	RAISE_APPLICATION_ERROR

RAISE_APPLICATION_ERROR	is	a	special	built-in	procedure	provided	by	Oracle.	It
allows	programmers	to	create	meaningful	error	messages	for	a	specific	application.	The
RAISE_APLICATION_ERROR	procedure	works	with	user-defined	exceptions,	and	its
syntax	is	shown	in	Listing	10.1.

Listing	10.1	Two	forms	of	the	RAISE_APPLICATION_ERROR	Procedure
Click	here	to	view	code	image

RAISE_APPLICATION_ERROR	(error_number,	error_message);

Or
Click	here	to	view	code	image

RAISE_APPLICATION_ERROR	(error_number,	error_message,	keep_errors);

As	you	can	see,	there	are	two	forms	of	the	RAISE_APPLICATION_ERROR
procedure.	The	first	form	contains	only	two	parameters:	error_number	and
error_message.	The	error_number	is	the	number	of	the	error	that	a	programmer
associates	with	a	specific	error	message;	it	can	range	from	–20,999	to	–20,000.	The
error_message	is	the	text	of	the	error,	and	it	can	contain	up	to	2048	characters.

The	second	form	of	RAISE_APPLICATION_ERROR	contains	one	additional
parameter:	keep_errors.	It	is	an	optional	Boolean	parameter.	If	keep_errors	is	set
to	TRUE,	the	new	error	will	be	added	to	the	list	of	errors	that	have	already	been	raised.
This	list	of	errors	is	called	the	error	stack.	If	keep_errors	is	set	to	FALSE,	the	new

error	replaces	the	error	stack.	The	default	value	for	the	parameter	keep_errors	is
FALSE.

The	RAISE_APPLICATION_ERROR	procedure	works	with	unnamed	user-defined
exceptions.	That	is,	it	associates	the	number	of	the	error	with	the	text	of	the	error.	In	turn,
the	user-defined	exception	does	not	have	a	name	associated	with	it.

Consider	the	following	example	used	in	Chapter	9,	ch09_2a.sql.	This	example
illustrates	the	use	of	the	named	user-defined	exception	and	the	RAISE	statement.	Within
the	example,	compare	the	modified	version	using	the	unnamed	user-defined	exception	and
the	RAISE_APPLICATION_ERROR	procedure.	The	named	user-defined	exception	and
the	RAISE	statement	are	shown	in	bold.

For	Example		ch10_1a.sql	(Chapter	9,	example	ch09_2a.sql)
Click	here	to	view	code	image

DECLARE

		v_student_id				STUDENT.STUDENT_ID%TYPE	:=	&sv_student_id;

		v_total_courses	NUMBER;

		e_invalid_id				EXCEPTION;

BEGIN

		IF	v_student_id	<	0

		THEN

				RAISE	e_invalid_id;

		END	IF;

		SELECT	COUNT(*)

				INTO	v_total_courses

				FROM	enrollment

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘The	student	is	registered	for

‘||v_total_courses||’	courses’);

		DBMS_OUTPUT.PUT_LINE	(‘No	exception	has	been	raised’);

EXCEPTION

		WHEN	e_invalid_id

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	ID	cannot	be	negative’);

END;

Now,	examine	the	modified	example	(affected	statements	are	shown	in	bold):

For	Example		ch10_1b.sql
Click	here	to	view	code	image

DECLARE

		v_student_id				STUDENT.STUDENT_ID%TYPE	:=	&sv_student_id;

		v_total_courses	NUMBER;

BEGIN

		IF	v_student_id	<	0

		THEN

				RAISE_APPLICATION_ERROR	(–20000,	‘An	ID	cannot	be	negative’);

		END	IF;

		SELECT	COUNT(*)

				INTO	v_total_courses

				FROM	enrollment

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘The	student	is	registered	for	‘||

v_total_courses||’	courses’);

END;

The	second	version	of	the	example	does	not	include	the	name	of	the	exception,	the	RAISE
statement,	or	the	error-handling	section	of	the	PL/SQL	block.	Instead,	it	has	a	single
RAISE_APPLICATION_ERROR	statement.

Did	You	Know?

Even	though	the	RAISE_APPLICATION_ERROR	is	a	built-in	procedure,	it
is	referenced	as	a	statement	when	used	in	the	PL/SQL	block.

Both	versions	of	the	example	achieve	the	same	result:	The	processing	stops	if	a
negative	number	is	provided	for	the	variable	v_student_id.	However,	the	second
version	of	this	example	produces	output	that	has	the	look	and	feel	of	an	error	message.

Now,	run	both	versions	of	the	example	with	the	value	of	–4	for	the	variable
v_student_id.	The	first	version	of	the	example	produces	the	following	output:

An	ID	cannot	be	negative

The	second	version	of	the	example	produces	the	following	output:
Click	here	to	view	code	image

ORA-20000:	An	ID	cannot	be	negative

ORA-06512:	at	line	7

The	output	produced	by	the	first	version	of	the	example	contains	the	error	message	“An
ID	cannot	be	negative.”	The	same	error	message	generated	by	the	second	version	of	the
example	resembles	an	error	message	generated	by	the	system,	because	the	error	number
ORA-20000	precedes	the	error	message.	Also,	note	that	when	you	run	these	examples	in
SQL	Developer,	the	error	message	produced	by	the	first	version	of	the	example	appears	in
the	Dbms	Output	window,	whereas	the	same	error	message	produced	by	the	second
version	of	the	example	appears	in	the	Script	Output	window.

The	RAISE_APPLICATION_ERROR	procedure	can	work	with	built-in	exceptions	as
well.	Consider	the	following	example:

For	Example		ch10_2a.sql
Click	here	to	view	code	image

DECLARE

		v_student_id	STUDENT.STUDENT_ID%TYPE	:=	&sv_student_id;

		v_name							VARCHAR2(50);

BEGIN

		SELECT	first_name||’	‘||last_name

				INTO	v_name

				FROM	student

			WHERE	student_id	=	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(v_name);

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				RAISE_APPLICATION_ERROR	(-20001,	‘This	ID	is	invalid’);

END;

When	the	user	enters	a	value	of	100	for	the	student	ID,	the	example	produces	the
following	output:
Click	here	to	view	code	image

ORA-20001:	This	ID	is	invalid

ORA-06512:	at	line	13

The	built-in	exception	NO_DATA_FOUND	is	raised	because	there	is	no	record	in	the
STUDENT	table	corresponding	to	this	value	of	the	student	ID.	However,	the	number	of	the
error	message	does	not	refer	to	the	exception	NO_DATA_FOUND;	rather,	the	error
message	“This	ID	is	invalid”	is	displayed.

The	RAISE_APPLICATION_ERROR	procedure	allows	programmers	to	return	error
messages	in	a	manner	that	is	consistent	with	Oracle	errors.	However,	it	is	up	to	the
programmer	to	maintain	the	relationship	between	the	error	numbers	and	the	error
messages.	For	example,	you	have	designed	an	application	to	maintain	the	enrollment
information	on	students.	In	this	application	you	have	associated	the	error	text	“This	ID	is
invalid”	with	the	error	number	ORA-20001.	This	error	message	can	be	used	by	your
application	for	any	invalid	ID.	Once	you	have	associated	the	error	number	(ORA-20001)
with	a	specific	error	message	(“This	ID	is	invalid”),	you	should	not	assign	this	error
number	to	another	error	message.	If	you	do	not	maintain	the	relationship	between	error
numbers	and	error	messages,	the	error-handling	interface	of	your	application	might
become	very	confusing	to	the	users	and	to	yourself.

Lab	10.2:	EXCEPTION_INIT	Pragma

After	this	lab,	you	will	be	able	to

	Use	the	EXCEPTION_INIT	Pragma

Often	your	programs	need	to	handle	an	Oracle	error	that	has	a	particular	number
associated	with	it,	but	lacks	a	name	by	which	it	can	be	referenced.	In	this	situation,	you
are	unable	to	write	a	handler	to	trap	this	error,	but	you	can	use	a	construct	called	pragma
to	handle	the	exception.	A	pragma	is	a	special	instruction	to	the	PL/SQL	compiler	that	is
processed	at	the	time	of	the	compilation.	The	EXCEPTION_INIT	pragma	allows	you	to
associate	an	Oracle	error	number	with	a	name	for	a	user-defined	error.	Once	you	associate
an	error	name	with	an	Oracle	error	number,	you	can	reference	the	error	and	write	a	handler
for	it.

The	EXCEPTION_INIT	pragma	appears	in	the	declaration	section	of	a	block	as	shown
in	Listing	10.2.

Listing	10.2	Associating	the	EXCEPTION_INIT	Pragma	with	a	User-Defined	Exception
Click	here	to	view	code	image

DECLARE

		exception_name	EXCEPTION;

		PRAGMA	EXCEPTION_INIT	(exception_name,	error_code);

Notice	that	the	declaration	of	the	user-defined	exception	appears	before	the
EXCEPTION_INIT	pragma	where	it	is	used.	The	EXCEPTION_INIT	pragma	has	two
parameters:	exception_name	and	error_code.	The	exception_name	is	the
name	of	your	exception,	and	the	error_code	is	the	number	of	the	Oracle	error	you
want	to	associate	with	your	exception.	Consider	the	following	example:

For	Example		ch10_3a.sql
Click	here	to	view	code	image

DECLARE

		v_zip	ZIPCODE.ZIP%TYPE	:=	‘&sv_zip’;

BEGIN

		DELETE	FROM	zipcode

			WHERE	zip	=	v_zip;

		DBMS_OUTPUT.PUT_LINE	(‘Zip	‘||v_zip||’	has	been	deleted’);

		COMMIT;

END;

In	this	example,	the	record	corresponding	to	the	value	of	the	ZIP	code	provided	by	a	user
is	deleted	from	the	ZIPCODE	table.	Next,	the	message	that	a	specific	ZIP	code	has	been
deleted	is	displayed	on	the	screen.

Take	a	look	at	the	results	produced	by	this	example	when	the	user	enters	06870	for	the
value	of	v_zip:
Click	here	to	view	code	image

ORA-02292:	integrity	constraint	(STUDENT.STU_ZIP_FK)violated	-	child

record	found

ORA-06512:	at	line	4

The	error	message	generated	by	this	example	occurs	because	you	are	trying	to	delete	a
record	from	the	ZIPCODE	table	while	its	child	records	exist	in	the	STUDENT	table,
thereby	violating	the	referential	integrity	constraint	STU_ZIP_FK.	In	other	words,	there
is	a	record	with	a	foreign	key	(STU_ZIP_FK)	in	the	STUDENT	table	(child	table)	that
references	a	record	in	the	ZIPCODE	table	(parent	table).

This	error	has	Oracle	error	number	ORA-02292	assigned	to	it,	but	it	does	not	have	a
name.	To	handle	this	error	in	the	script,	you	need	to	associate	the	error	number	with	a
user-defined	exception.

Suppose	you	modify	the	example	as	follows	(all	changes	are	shown	in	bold):

For	Example		ch10_3b.sql
Click	here	to	view	code	image

DECLARE

		v_zip												ZIPCODE.ZIP%TYPE	:=	‘&sv_zip’;

		e_child_exists	EXCEPTION;

		PRAGMA	EXCEPTION_INIT(e_child_exists,	-2292);

BEGIN

		DELETE	FROM	zipcode

			WHERE	zip	=	v_zip;

		DBMS_OUTPUT.PUT_LINE	(‘Zip	‘||v_zip||’	has	been	deleted’);

		COMMIT;

EXCEPTION

		WHEN	e_child_exists

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘Delete	students	for	this	ZIP	code	first’);

END;

In	this	version	of	the	script,	you	declare	the	exception	e_child_exists.	You	then
associate	this	exception	with	the	error	number	–2292.	Note	that	you	do	not	use	ORA-
02292	in	the	EXCEPTION_INIT	pragma.	Next,	you	add	the	exception-handling	section
to	the	PL/SQL	block,	thereby	trapping	this	error.

Did	you	notice	that	even	though	the	exception	e_child_exists	is	a	user-defined
exception,	you	did	not	use	the	RAISE	statement,	as	you	did	in	Chapter	9?	This	is	because
you	have	associated	the	user-defined	exception	with	the	specific	Oracle	error	number.
Recall	that	even	though	an	Oracle	exception	has	a	number	associated	with	it,	it	must	be
referenced	by	its	name	in	the	exception-handling	section.	Since	Oracle	error	number	–
2292	does	not	have	a	name	associated	with	it,	you	performed	that	association	explicitly
via	the	EXCEPTION_INIT	pragma.

When	you	run	this	version	of	the	example	using	the	same	value	of	ZIP	code,	it	produces
the	following	output:
Click	here	to	view	code	image

Delete	students	for	this	zipcode	first

This	output	contains	a	new	error	message	displayed	by	the	DBMS_OUTPUT.PUT_LINE
statement.	It	is	more	descriptive	than	the	previous	version	of	the	output.	Remember	that
the	user	of	the	program	probably	does	not	know	about	the	referential	integrity	constraints
existing	in	the	database.	Therefore,	the	EXCEPTION_INIT	pragma	improves	the
readability	of	your	error-handling	interface.	If	the	need	arises,	you	can	use	multiple
EXCEPTION_INIT	pragmas	in	your	program.

Lab	10.3:	SQLCODE	and	SQLERRM

After	this	lab,	you	will	be	able	to

	Use	SQLCODE	and	SQLERRM

In	Chapter	8,	you	learned	about	the	Oracle	exception	OTHERS.	All	Oracle	errors	can	be
trapped	with	the	help	of	the	OTHERS	exception	handler,	as	illustrated	in	the	following
example:

For	Example		ch10_4a.sql
Click	here	to	view	code	image

DECLARE

		v_zip			VARCHAR2(5)	:=	‘&sv_zip’;

		v_city		VARCHAR2(15);

		v_state	CHAR(2);

BEGIN

		SELECT	city,	state

				INTO	v_city,	v_state

				FROM	zipcode

			WHERE	zip	=	v_zip;

		DBMS_OUTPUT.PUT_LINE	(v_city||’,	‘||v_state);

EXCEPTION

		WHEN	OTHERS

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘An	error	has	occurred’);

END;

When	the	user	enters	07458	for	the	value	of	the	ZIP	code,	this	example	produces	the
following	output:

An	error	has	occurred

This	output	informs	you	that	an	error	occurred	at	runtime,	but	you	do	not	know	what	the
error	is	and	what	caused	it.	Maybe	there	is	no	record	in	the	ZIPCODE	table	corresponding
to	the	value	provided	at	runtime,	maybe	there	is	a	data	type	mismatch	caused	by	the
SELECT	INTO	statement,	or	maybe	the	SELECT	INTO	statement	returned	more	than
one	row.	As	you	can	see,	even	though	this	is	a	simple	example,	a	number	of	runtime	errors
might	potentially	occur.

Of	course,	you	cannot	always	identify	every	possible	runtime	error	that	might	occur
when	a	program	is	running.	Therefore,	it	is	a	good	practice	to	include	the	OTHERS
exception	handler	in	your	script.	To	improve	the	error-handling	interface	of	your	program,
the	Oracle	platform	provides	two	built-in	functions,	SQLCODE	and	SQLERRM,	that	can	be
used	with	the	OTHERS	exception	handler.	The	SQLCODE	function	returns	the	Oracle	error
number,	and	the	SQLERRM	function	returns	the	error	message.	The	maximum	length	of	a
message	returned	by	the	SQLERRM	function	is	512	bytes,	which	is	the	maximum	length	of
an	Oracle	database	error	message.

Consider	what	happens	if	you	modify	the	preceding	example	by	adding	the	SQLCODE
and	SQLERRM	functions	as	follows	(modifications	are	highlighted	in	bold):

For	Example		ch10_4b.sql
Click	here	to	view	code	image

DECLARE

		v_zip						VARCHAR2(5)	:=	‘&sv_zip’;

		v_city					VARCHAR2(15);

		v_state				CHAR(2);

		v_err_code	NUMBER;

		v_err_msg		VARCHAR2(200);

BEGIN

		SELECT	city,	state

				INTO	v_city,	v_state

				FROM	zipcode

			WHERE	zip	=	v_zip;

		DBMS_OUTPUT.PUT_LINE	(v_city||’,	‘||v_state);

EXCEPTION

		WHEN	OTHERS

		THEN

				v_err_code	:=	SQLCODE;

				v_err_msg		:=	SUBSTR(SQLERRM,	1,	200);

				DBMS_OUTPUT.PUT_LINE	(‘Error	code:	‘||v_err_code);

				DBMS_OUTPUT.PUT_LINE	(‘Error	message:	‘||v_err_msg);

END;

When	executed,	this	version	of	the	example	produces	the	following	output:
Click	here	to	view	code	image

Error	code:	-6502

Error	message:	ORA-06502:	PL/SQL:	numeric	or	value	error:	character	string

buffer	too	small

This	version	of	the	script	includes	two	new	variables:	v_err_code	and	v_err_msg.
In	the	exception-handling	section	of	the	block,	the	value	returned	by	the	SQLCODE
function	is	assigned	to	the	variable	v_err_code,	and	the	value	returned	by	the
SQLERRM	function	is	assigned	to	the	variable	v_err_msg.	Next,	the	error	number	and
the	error	message	are	displayed	on	the	screen	via	the	DBMS_OUTPUT.PUT_LINE
statements.

Notice	that	this	output	is	more	informative	than	the	output	produced	by	the	previous
version	of	the	example	because	it	displays	the	error	message.	Once	you	know	which
runtime	error	has	occurred	in	your	program,	you	can	take	steps	to	prevent	its	recurrence.

Generally,	the	SQLCODE	function	returns	a	negative	number	for	an	error	number.
However,	there	are	a	few	exceptions:

	When	the	SQLCODE	function	is	referenced	outside	the	exception	section,	it	returns	0
for	the	error	code.	The	value	of	0	means	successful	completion.

	When	the	SQLCODE	function	is	used	with	the	user-defined	exception,	it	returns	+1
for	the	error	code.

	The	SQLCODE	function	returns	a	value	of	100	when	the	NO_DATA_FOUND
exception	is	raised.

The	SQLERRM	function	accepts	an	error	number	as	a	parameter,	and	it	returns	an	error
message	corresponding	to	the	error	number.	Usually,	it	works	with	the	value	returned	by
the	SQLCODE	function.	However,	you	can	provide	the	error	number	yourself	if	such	a
need	arises.	Consider	the	following	example:

For	Example		ch10_5a.sql
Click	here	to	view	code	image

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Error	code:	‘||SQLCODE);

		DBMS_OUTPUT.PUT_LINE	(‘Error	message1:	‘||SQLERRM(SQLCODE));

		DBMS_OUTPUT.PUT_LINE	(‘Error	message2:	‘||SQLERRM(100));

		DBMS_OUTPUT.PUT_LINE	(‘Error	message3:	‘||SQLERRM(200));

		DBMS_OUTPUT.PUT_LINE	(‘Error	message4:	‘||SQLERRM(-20000));

END;

In	this	example,	the	SQLCODE	and	SQLERRM	functions	are	used	in	the	executable
section	of	the	PL/SQL	block.	The	SQLERRM	function	accepts	the	value	provided	by
SQLCODE	in	the	second	DBMS_OUTPUT.PUT_LINE	statement.	In	the	following
DBMS_OUPUT.PUT_LINE	statements,	the	SQLERRM	function	accepts	the	values	of	100,
200,	and	–20,000	respectively.	When	executed,	this	example	produces	the	following
output:

Click	here	to	view	code	image

Error	code:	0

Error	message1:	ORA-0000:	normal,	successful	completion

Error	message2:	ORA-01403:	no	data	found

Error	message3:		-200:	non-ORACLE	exception

Error	message4:	ORA-20000:

The	first	DBMS_OUTPUT.PUT_LINE	statement	displays	the	value	of	the	SQLCODE
function.	Because	no	exception	has	been	raised,	it	returns	0.	Next,	the	value	returned	by
the	SQLCODE	function	is	accepted	as	a	parameter	by	the	SQLERRM	function.	This
function	returns	the	message	“ORA-0000:	normal,	successful	completion.”	Next,	the
SQLERRM	function	accepts	100	as	its	parameter	and	returns	“ORA-01402:	no	data….”
Notice	that	when	the	SQLERRM	function	accepts	200	as	its	parameter,	it	is	not	able	to	find
an	Oracle	exception	that	corresponds	to	the	error	number	200.	Finally,	when	the
SQLERRM	function	accepts	–20,000	as	its	parameter,	no	error	message	is	returned.	Recall
that	–20,000	is	an	error	number	that	can	be	associated	with	a	named	user-defined
exception.

Summary
In	this	chapter,	you	have	concluded	your	exploration	of	error	handling	and	exceptions.
You	learned	how	to	use	the	RAISE_APPLICATION_ERROR	procedure	and	the
SQLCODE	and	SQLERMM	functions	to	create	meaningful	error	messages	in	your	code.	In
addition,	you	learned	about	the	EXCEPTION_INIT	pragma,	which	enables	you	to
associate	a	user-defined	exception	with	the	Oracle	error	number.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

11.	Introduction	to	Cursors

In	this	chapter,	you	will	learn	about

	Types	of	Cursors

	Cursor	Loop

	Cursor	FOR	LOOPs

	Nested	Cursors

Cursors	are	memory	areas	where	the	Oracle	platform	executes	SQL	statements.	In
database	programming,	cursors	are	internal	data	structures	that	allow	processing	of	SQL
query	results.	For	example,	you	use	a	cursor	to	operate	on	all	the	rows	of	the	STUDENT
table	for	those	students	taking	a	particular	course	(having	associated	entries	in	the
ENROLLMENT	table).	In	this	chapter,	you	will	learn	to	declare	an	explicit	cursor	that
enables	a	user	to	process	many	rows	returned	by	a	query	and	to	write	code	that	will
process	each	row	one	at	a	time.

Lab	11.1:	Types	of	Cursors

After	this	lab,	you	will	be	able	to

	Make	Use	of	an	Implicit	Cursor

	Make	Use	of	an	Explicit	Cursor

For	the	Oracle	platform	to	process	an	SQL	statement,	it	needs	to	create	an	area	of	memory
known	as	the	context	area;	this	will	contain	the	information	necessary	to	process	the
statement.	This	information	includes	the	number	of	rows	processed	by	the	statement	and	a
pointer	to	the	parsed	representation	of	the	statement	(parsing	an	SQL	statement	is	the
process	whereby	information	is	transferred	to	the	server,	at	which	point	the	SQL	statement
is	evaluated	as	being	valid).	In	a	query,	the	active	set	refers	to	the	rows	that	will	be
returned.

A	cursor	is	a	handle,	or	pointer,	to	the	context	area.	Through	the	cursor,	a	PL/SQL
program	can	control	the	context	area	and	what	happens	to	it	as	the	statement	is	processed.
Two	important	features	about	the	cursor	are	as	follows:

1.	Cursors	allow	you	to	fetch	and	process	rows	returned	by	a	SELECT	statement,	one
row	at	a	time.

2.	A	cursor	is	named	so	that	it	can	be	referenced.

There	are	two	types	of	cursors:

1.	An	implicit	cursor	is	automatically	declared	by	Oracle	every	time	an	SQL	statement
is	executed.	The	user	will	not	be	aware	of	this	happening	and	will	not	be	able	to
control	or	process	the	information	in	an	implicit	cursor.

2.	An	explicit	cursor	is	defined	by	the	program	for	any	query	that	returns	more	than
one	row	of	data.	That	means	the	programmer	has	declared	the	cursor	within	the
PL/SQL	code	block.	This	declaration	allows	the	application	to	sequentially	process
each	row	of	data	as	it	is	returned	by	the	cursor.

Making	Use	of	an	Implicit	Cursor
To	better	understand	the	capabilities	of	an	explicit	cursor,	you	first	need	to	understand	the
process	followed	for	an	implicit	cursor.

Process	of	an	Implicit	Cursor

	Any	given	PL/SQL	block	issues	an	implicit	cursor	whenever	an	SQL	statement	is
executed,	as	long	as	an	explicit	cursor	does	not	exist	for	that	SQL	statement.

	A	cursor	is	automatically	associated	with	every	DML	(Data	Manipulation	Language)
statement	(UPDATE,	DELETE,	INSERT).

	All	UPDATE	and	DELETE	statements	have	cursors	that	identify	the	set	of	rows	that
will	be	affected	by	the	operation.

	An	INSERT	statement	needs	a	place	to	receive	the	data	that	is	to	be	inserted	in	the
database;	the	implicit	cursor	fulfills	this	need.

	The	most	recently	opened	cursor	is	called	the	“SQL”	cursor.

The	implicit	cursor	is	used	to	process	INSERT,	UPDATE,	DELETE,	and	SELECT
INTO	statements.	During	the	processing	of	an	implicit	cursor,	the	Oracle	platform
automatically	performs	the	OPEN,	FETCH,	and	CLOSE	operations.

Did	You	Know?

An	implicit	cursor	can	tell	you	how	many	rows	were	affected	by	an	update.
Cursors	have	attributes	such	as	ROWCOUNT.	SQL%ROWCOUNT,	for	example,
returns	the	numbers	of	rows	updated.	It	can	be	used	as	follows:
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

BEGIN

		UPDATE	student

					SET	first_name	=	‘B’

			WHERE	first_name	LIKE	‘B%’;

		DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT);

END;

Consider	the	following	example	of	an	implicit	cursor:

For	Example		ch11_1a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		v_first_name	VARCHAR2(35);

		v_last_name	VARCHAR2(35);

BEGIN

		SELECT	first_name,	last_name

				INTO	v_first_name,	v_last_name

				FROM	student

			WHERE	student_id	=	123;

		DBMS_OUTPUT.PUT_LINE	(‘Student	name:	‘||

				v_first_name||’	‘||v_last_name);

EXCEPTION

		WHEN	NO_DATA_FOUND	THEN

				DBMS_OUTPUT.PUT_LINE

				(‘There	is	no	student	with	student	ID	123’);

END;

The	Oracle	platform	automatically	associates	an	implicit	cursor	with	the	SELECT
INTO	statement	and	fetches	the	values	for	the	variables,	v_first_name	and
v_last_name.	Once	the	SELECT	INTO	statement	completes,	Oracle	closes	the
implicit	cursor.

Unlike	an	implicit	cursor,	an	explicit	cursor	is	defined	by	the	program	for	any	query	that
returns	more	than	one	row	of	data.	Thus	you	need	to	process	an	explicit	cursor	as	follows:
First	you	declare	a	cursor.	Second,	you	open	an	earlier	declared	cursor.	Third,	you	fetch
the	earlier	declared	and	opened	cursor.	Finally,	you	close	the	cursor.

Making	Use	of	an	Explicit	Cursor
The	only	means	of	generating	an	explicit	cursor	is	for	the	cursor	to	be	named	in	the
declaration	section	of	the	PL/SQL	block.

The	advantages	of	declaring	an	explicit	cursor	over	using	an	indirect	implicit	cursor	are
that	the	explicit	cursor	gives	more	programmatic	control	to	the	programmer.	Implicit
cursors	are	less	efficient	than	explicit	cursors,	which	makes	it	harder	to	trap	data	errors.

The	process	of	working	with	an	explicit	cursor	consists	of	the	following	steps:

1.	Declaring	the	cursor.	This	initializes	the	cursor	into	memory.

2.	Opening	the	cursor.	The	previously	declared	cursor	can	now	be	opened;	memory	is
allocated.

3.	Fetching	the	cursor.	The	previously	declared	and	opened	cursor	can	now	retrieve
data;	this	is	the	process	of	fetching	the	cursor.

4.	Closing	the	cursor.	The	previously	declared,	opened,	and	fetched	cursor	must	now
be	closed	to	release	memory	allocation.

Declaring	a	Cursor

Declaring	a	cursor	defines	the	name	of	the	cursor	and	associates	it	with	a	SELECT
statement.	The	first	step	is	to	declare	the	cursor	with	the	following	syntax:
Click	here	to	view	code	image

CURSOR	c_cursor_name	IS	select	statement

Did	You	Know?

The	naming	conventions	that	are	used	in	this	book	advise	you	to	always	name
a	cursor	as	c_cursorname.	When	you	include	c_	at	the	beginning	of	the
name,	it	will	always	be	clear	to	you	that	the	name	is	referencing	a	cursor.

It	is	not	possible	to	make	use	of	a	cursor	unless	the	complete	cycle	of	(1)	declaring,	(2)
opening,	(3)	fetching,	and	(4)	closing	has	been	performed.	To	explain	these	four	steps,	the
following	examples	show	code	fragments	for	each	step.	After	we	go	over	the	process	step
by	step,	you	will	then	be	shown	the	complete	process.

The	following	example	is	a	PL/SQL	fragment	that	demonstrates	the	first	step	of
declaring	a	cursor.	A	cursor	named	C_MyCursor	is	declared	as	a	SELECT	statement	of
all	the	rows	in	the	zipcode	table	that	have	the	item	state	equal	to	“NY.”

For	Example		ch11_1b.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	C_MyCursor	IS

				SELECT	*

						FROM	zipcode

					WHERE	state	=	‘NY’;

…

			–<code	would	continue	here	with	opening,	fetching,

				and	closing	of	the	cursor>

Did	You	Know?

Cursor	names	follow	the	same	rules	of	scope	and	visibility	that	apply	to	the
PL/SQL	identifiers.	Because	the	name	of	the	cursor	is	a	PL/SQL	identifier,	it
must	be	declared	before	it	is	referenced.	Any	valid	select	statement	can	be
used	to	define	a	cursor,	including	joins	and	statements	with	the	UNION	or
MINUS	clause.

Record	Types

A	record	is	a	composite	data	structure,	which	means	that	it	is	composed	of	one	or	more
elements.	Records	are	very	much	like	a	row	of	a	database	table,	but	each	element	of	the
record	does	not	stand	on	its	own.	PL/SQL	supports	three	kinds	of	records:	(1)	table	based,
(2)	cursor	based,	and	(3)	programmer	defined.

A	table-based	record	is	one	whose	structure	is	drawn	from	the	list	of	columns	in	the
table.	A	cursor-based	record	is	one	whose	structure	matches	the	elements	of	a	predefined
cursor.	To	create	a	table-based	or	cursor-based	record,	use	the	%ROWTYPE	attribute.
Click	here	to	view	code	image

<record_name>		<table_name	or	cursor_name>%ROWTYPE

For	Example		ch11_1c.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		vr_student	student%ROWTYPE;

BEGIN

		SELECT	*

				INTO	vr_student

				FROM	student

			WHERE	student_id	=	156;

		DBMS_OUTPUT.PUT_LINE	(vr_student.first_name||’	‘

				||vr_student.last_name||’	has	an	ID	of	156’);

EXCEPTION

		WHEN	no_data_found

				THEN

								RAISE_APPLICATION_ERROR(-2001,‘The	Student	‘||

									‘is	not	in	the	database’);

END;

The	variable	vr_student	is	a	record	type	of	the	existing	database	table	student.
That	is,	it	has	the	same	components	as	a	row	in	the	student	table.	A	cursor-based	record
is	much	the	same,	except	that	it	is	drawn	from	the	select	list	of	an	explicitly	declared
cursor.	When	referencing	elements	of	the	record,	you	use	the	same	syntax	that	you	use
with	tables:

record_name.item_name

To	define	a	variable	that	is	based	on	a	cursor	record,	you	must	first	declare	the	cursor.	In
the	following	lab,	you	will	start	by	declaring	a	cursor	and	then	proceed	with	the	process	of
opening	the	cursor,	fetching	from	the	cursor,	and	finally	closing	the	cursor.

A	table-based	record	is	drawn	from	a	particular	table	structure.	Consider	the	following
code	fragment:

For	Example
Click	here	to	view	code	image

DECLARE

		vr_zip	ZIPCODE%ROWTYPE;

		vr_instructor	INSTRUCTOR%ROWTYPE;

The	record	vr_zip	has	a	structure	similar	to	a	row	of	the	ZIPCODE	table.	Its	elements
are	CITY,	STATE,	and	ZIP.	Note	that	if	the	CITY	column	of	the	ZIPCODE	table	has
been	defined	as	VARCHAR2(15),	the	attribute	CITY	of	the	vr_zip	record	will	have	the
same	data	type	structure.	Similarly,	the	record	vr_instructor	is	based	on	the	row	of
the	INSTRUCTOR	table.

Making	Use	of	Record	Types

Here	is	an	example	of	a	record	type	in	an	anonymous	PL/SQL	block.

For	Example
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

	vr_zip	ZIPCODE%ROWTYPE;

BEGIN

		SELECT	*

				INTO	vr_zip

				FROM	zipcode

			WHERE	rownum	<	2;

		DBMS_OUTPUT.PUT_LINE(‘City:	‘||vr_zip.city);

		DBMS_OUTPUT.PUT_LINE(‘State:	‘||vr_zip.state);

		DBMS_OUTPUT.PUT_LINE(‘Zip:	‘||vr_zip.zip);

END;

In	this	example,	you	select	a	single	row	for	the	ZIPCODE	table	into	the	vr_zip
record.	Next,	you	display	each	element	of	the	record	on	the	screen.	Notice	that	to
reference	each	attribute	of	the	record,	dot	notation	is	used.	When	run,	the	example
produces	the	following	output:
Click	here	to	view	code	image

City:	Santurce

State:	PR

Zip:	00914

PL/SQL	procedure	successfully	completed.

A	cursor-based	record	is	based	on	the	list	of	elements	of	a	predefined	cursor.	The	record
vr_student_name	has	a	structure	similar	to	a	row	returned	by	the	SELECT	statement
defined	in	the	cursor.	It	contains	two	attributes,	the	student’s	first	and	last	names.	A	cursor-
based	record	can	be	declared	only	after	its	corresponding	cursor	has	been	declared;
otherwise,	a	compilation	error	will	occur.

For	Example
Click	here	to	view	code	image

DECLARE

		CURSOR	c_student_name	IS

				SELECT	first_name,	last_name

						FROM	student;

		vr_student_name	c_student_name%ROWTYPE;

Lab	11.2:	Cursor	Loop

After	this	lab,	you	will	be	able	to

	Process	an	Explicit	Cursor

	Make	Use	of	User-Defined	Records

	Make	Use	of	Cursor	Attributes

To	process	a	cursor,	you	will	have	to	loop	through	it.	In	this	section,	we	explain	the	details
of	each	step	of	the	loop	by	going	through	a	code	example.

Processing	an	Explicit	Cursor
The	following	example	shows	the	declaration	section	of	a	PL/SQL	block	that	defines	a
cursor	named	c_student,	based	on	the	student	table	with	the	last_name	and	the
first_name	concatenated	into	one	item	called	name	and	leaving	out	the
created_by	and	modified_by	columns.	The	block	then	declares	a	record	based	on
this	cursor.

For	Example
Click	here	to	view	code	image

DECLARE

		CURSOR	c_student	is

				SELECT	first_name||’		’||Last_name	name

						FROM	student;

		vr_student	c_student%ROWTYPE;

Opening	a	Cursor

The	next	step	in	controlling	an	explicit	cursor	is	to	open	it.	When	the	open	cursor
statement	is	processed,	four	actions	will	take	place	automatically:

1.	The	variables	(including	bind	variables)	in	the	WHERE	clause	are	examined.

2.	Based	on	the	values	of	the	variables,	the	active	set	is	determined	and	the	PL/SQL
engine	executes	the	query	for	that	cursor.	Variables	are	examined	at	cursor	open	time
only.

3.	The	PL/SQL	engine	identifies	the	active	set	of	data—the	rows	from	all	involved
tables	that	meet	the	WHERE	clause	criteria.

4.	The	active	set	pointer	is	set	to	the	first	row.

The	syntax	for	opening	a	cursor	is
OPEN	cursor_name;

Did	You	Know?

A	pointer	into	the	active	set	is	also	established	at	the	cursor	open	time.	The
pointer	determines	which	row	is	the	next	to	be	fetched	by	the	cursor.	More
than	one	cursor	can	be	opened	at	a	time.

The	following	example	shows	how	the	cursor	c_student	would	be	opened	by
continuing	the	previous	example.

For	Example
Click	here	to	view	code	image

DECLARE

		CURSOR	c_student	is

				SELECT	first_name||’		’||Last_name	name

						FROM	student;

		vr_student	c_student%ROWTYPE;

BEGIN

		OPEN	c_student;

Fetching	Rows	in	a	Cursor

After	the	cursor	has	been	declared	and	opened,	you	can	retrieve	data	from	the	cursor.	The
process	of	getting	the	data	from	the	cursor	is	referred	to	as	fetching	the	cursor.	There	are
two	methods	of	fetching	a	cursor,	which	use	the	following	commands:
Click	here	to	view	code	image

FETCH	cursor_name	INTO	PL/SQL	variables;

or
Click	here	to	view	code	image

FETCH	cursor_name	INTO	PL/SQL	record;

When	the	cursor	is	fetched,	the	following	occurs:

1.	The	fetch	command	is	used	to	retrieve	one	row	at	a	time	from	the	active	set.	This	is
generally	done	inside	a	loop.	The	values	of	each	row	in	the	active	set	can	then	be
stored	into	the	corresponding	variables	or	PL/SQL	record	one	at	a	time,	performing
operations	on	each	one	successively.

2.	After	each	FETCH	command,	the	active	set	pointer	is	moved	forward	to	the	next
row.	Thus,	each	fetch	will	return	successive	rows	of	the	active	set,	until	the	entire	set
is	returned.	The	last	FETCH	command	will	not	assign	values	to	the	output	variables;
thus	they	will	still	contain	their	prior	values.

Closing	a	Cursor

Once	all	of	the	rows	in	the	cursor	have	been	processed	(retrieved),	the	cursor	should	be
closed.	This	tells	the	PL/SQL	engine	that	the	program	is	finished	with	the	cursor,	and	the
resources	associated	with	it	can	be	freed.	The	syntax	for	closing	the	cursor	is

CLOSE	cursor_name;

Did	You	Know?

Once	a	cursor	is	closed,	it	is	no	longer	valid	to	fetch	from	it.	Likewise,	it	is
not	possible	to	close	an	already	closed	cursor.	Either	attempt	will	result	in	an
Oracle	error.

For	Example		ch11_2a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		CURSOR	c_student_name	IS

				SELECT	first_name,	last_name

						FROM	student

					WHERE	rownum	<=	5;

		vr_student_name	c_student_name%ROWTYPE;

BEGIN

		OPEN	c_student_name;

		LOOP

				FETCH	c_student_name	INTO	vr_student_name;

				EXIT	WHEN	c_student_name%NOTFOUND;

				DBMS_OUTPUT.PUT_LINE(‘Student	name:	‘||

						vr_student_name.first_name

						||’		’||vr_student_name.last_name);

		END	LOOP;

		CLOSE	c_student_name;

END;

In	this	example,	a	cursor	is	declared	that	returns	five	student	names.	Next,	a	cursor-

based	record	is	declared.	In	the	body	of	the	program,	an	explicit	cursor	is	processed	via
the	cursor	loop.	In	the	body	of	the	loop,	each	record	is	returned	by	the	cursor	to	the	cursor-
based	record,	vr_student_name.	Next	the	content	of	the	cursor	is	displayed	on	the
screen.	When	run,	the	example	produces	the	following	output:
Click	here	to	view	code	image

Student	name:	Austin	V.	Cadet

Student	name:	Frank	M.	Orent

Student	name:	Yvonne	Winnicki

Student	name:	Mike	Madej

Student	name:	Paula	Valentine

PL/SQL	procedure	successfully	completed.

Consider	the	same	example	with	single	modification.	Notice	that	the
DBMS_OUTPUT.PUT_LINE	statement	has	been	moved	outside	the	loop.

For	Example		ch11_2b.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		CURSOR	c_student_name	IS

				SELECT	first_name,	last_name

						FROM	student

					WHERE	rownum	<=	5;

		vr_student_name	c_student_name%ROWTYPE;

BEGIN

		OPEN	c_student_name;

		LOOP

				FETCH	c_student_name	INTO	vr_student_name;

				EXIT	WHEN	c_student_name%NOTFOUND;

		END	LOOP;

		CLOSE	c_student_name;

		DBMS_OUTPUT.PUT_LINE(‘Student	name:	‘||

				vr_student_name.first_name||’	‘

				||vr_student_name.last_name);

END;

The	DBMS_OUTPUT.PUT_LINE	has	been	moved	outside	the	loop.	First	the	loop	will
process	the	five	student	records.	The	values	for	each	record	will	be	placed	in	the	record
vr_student_name,	but	each	time	the	loop	iterates	it	will	replace	the	value	in	the
record	with	a	new	value.	When	the	five	iterations	of	the	loop	are	finished,	it	will	exit
because	of	the	EXIT	WHEN	condition,	leaving	the	vr_student_name	record	with	the
last	value	that	was	in	the	cursor.	This	is	the	only	value	that	will	be	displayed	via	the
DBMS_OUTPUT.PUT_LINE,	which	comes	after	the	loop	is	closed.

Making	Use	of	a	User-Defined	Record
A	user-defined	record	is	based	on	the	record	type	defined	by	a	programmer.	To	make	use
of	such	a	record,	first	you	declare	a	record	type,	and	then	you	declare	a	record	variable
based	on	the	record	type.

For	Example
Click	here	to	view	code	image

type	type_name	IS	RECORD

		(field_name	1	DATATYPE	1,

			field_name	2	DATATYPE	2,

			…

			field_name	N	DATATYPE	N);

record_name	TYPE_NAME%ROWTYPE;

Consider	the	following	code	fragment:

For	Example
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		—	declare	user-defined	type

		TYPE	instructor_info	IS	RECORD

				(instructor_id	instructor.instructor_id%TYPE,

					first_name	instructor.first_name%TYPE,

					last_name	instructor.last_name%TYPE,

					sections	NUMBER(1));

		—	declare	a	record	based	on	the	type	defined	above

		rv_instructor	instructor_info;

In	this	code	fragment,	a	type	instructor_info	is	defined.	This	type	contains	four
attributes:	the	instructor’s	ID,	first	name,	and	last	name,	and	the	number	of	sections	taught
by	this	instructor.	Next,	a	record	based	on	the	type	just	described	is	declared.	As	a	result,
this	record	has	structure	similar	to	the	type,	instructor_info.

Consider	the	following	example:

For	Example		ch11_2c.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		TYPE	instructor_info	IS	RECORD

				(first_name	instructor.first_name%TYPE,

					last_name	instructor.last_name%TYPE,

					sections	NUMBER);

		rv_instructor	instructor_info;

BEGIN

		SELECT	RTRIM(i.first_name),

									RTRIM(i.last_name),	COUNT(*)

				INTO	rv_instructor

				FROM	instructor	i,	section	s

			WHERE	i.instructor_id	=	s.instructor_id

					AND	i.instructor_id	=	102

		GROUP	BY	i.first_name,	i.last_name;

		DBMS_OUTPUT.PUT_LINE(‘Instructor,	‘||

					rv_instructor.first_name||

			’	‘||rv_instructor.last_name||

					’,	teaches	‘||rv_instructor.sections||

							’	section(s)’);

EXCEPTION

		WHEN	NO_DATA_FOUND	THEN

				DBMS_OUTPUT.PUT_LINE

							(‘There	is	no	such	instructor’);

END;

In	this	example,	a	record	called	vr_instructor	is	declared.	This	record	is	based	on
the	type	defined	previously.	In	the	body	of	the	PL/SQL	block,	this	record	is	initialized
with	the	help	of	the	SELECT	INTO	statement,	and	then	the	values	in	the	cursor	are
displayed	on	the	screen.	Note	that	the	columns	of	the	SELECT	INTO	statement	are	listed
in	the	same	order	that	the	attributes	are	defined	in	instructor_info	type.	There	is	no
need	to	use	dot	notation	for	this	record	initialization.

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

Instructor,	Tom	Wojick,	teaches	9	section(s)

PL/SQL	procedure	successfully	completed.

Making	Use	of	Cursor	Attributes
Table	11.1	lists	the	attributes	of	a	cursor,	which	are	used	to	determine	the	result	of	a	cursor
operation	when	fetched	or	opened.

Table	11.1	Explicit	Cursor	Attributes

You	can	make	use	of	the	attribute	%NOTFOUND	to	close	a	loop.	It	would	also	be	a	wise
idea	to	add	an	exception	clause	to	the	end	of	the	block	to	close	the	cursor	if	it	is	still	open.
If	you	add	the	following	statements	to	the	end	of	the	PL/SQL	block,	it	will	be	complete:
Click	here	to	view	code	image

EXIT	WHEN	c_student%NOTFOUND;

		END	LOOP;

		CLOSE	c_student;

EXCEPTION

		WHEN	OTHERS

		THEN

				IF	c_student%ISOPEN

				THEN

						CLOSE	c_student;

				END	IF;

END;

Cursor	attributes	can	be	used	with	implicit	cursors	by	using	the	prefix	“SQL”—for
example,	SQL%ROWCOUNT.

If	you	use	the	SELECT	INTO	syntax	in	your	PL/SQL	block,	you	will	be	creating	an
implicit	cursor.	You	can	then	use	these	attributes	on	the	implicit	cursor.

For	Example		ch11_3a.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON;

DECLARE

		v_city	zipcode.city%type;

BEGIN

		SELECT	city

				Into	v_city

				from	zipcode

			Where	zip	=	07002;

		IF	SQL%ROWCOUNT	=	1

		THEN

				DBMS_OUTPUT.PUT_LINE(v_city	||’	has	a	‘||

						‘ZIP	code	of	07002’);

		ELSIF	SQL%ROWCOUNT	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE(‘The	ZIP	code	07002	is	‘||

						’	not	in	the	database’);

		ELSE

				DBMS_OUTPUT.PUT_LINE(‘Stop	harassing	me’);

		END	IF;

END;

The	PL/SQL	block	ch11_3a	would	display	the	following	output:
Click	here	to	view	code	image

Bayonne	has	a	ZIP	code	of	07002

PL/SQL	procedure	successfully	completed.

The	declaration	section	declares	a	variable,	v_city,	anchored	to	the	data	type	of	the
city	item	in	the	zipcode	table.	The	SELECT	statement	causes	an	implicit	cursor	to	be
opened,	fetched,	and	then	closed.	The	IF	clause	makes	use	of	the	attribute	%ROWCOUNT
to	determine	whether	the	implicit	cursor	has	a	row	count	of	1.	If	it	does	have	a	row	count
of	1,	then	the	first	DBMS_OUTPUT	line	will	be	displayed.	Notice	that	this	example	does
not	handle	a	situation	where	the	row	count	is	greater	than	1.	Since	the	zipcode	table’s
primary	key	is	the	ZIP	code,	this	could	happen.

If	you	rerun	this	block	after	changing	07002	to	99999,	you	will	get	the	following	result:
ERROR	at	line	1:

ORA-01403:	no	data	found

ORA-06512:	at	line	4

A	SELECT	statement	in	a	PL/SQL	block	that	does	not	return	any	rows	will	raise	a	“no
data	found”	exception.	Because	there	is	no	exception	handler,	the	preceding	error	would
be	displayed.

You	may	have	expected	the	second	and	third	conditions	of	the	IF	statement	to	capture
the	instance	of	a	%ROWCOUNT	equal	to	0.	Now	that	you	understand	a	SELECT	statement
that	returns	no	rows	will	raise	a	WHEN	NO_DATA_FOUND	exception,	it	would	be	a	good
idea	to	handle	this	situation	by	adding	a	WHEN	NO_DATA_FOUND	exception	to	the
existing	block.	You	can	add	a	%ROWCOUNT	in	the	exception,	either	to	display	the	row
count	in	a	DBMS_OUTPUT	statement	or	to	create	an	IF	statement	that	handles	the	various
possibilities.

Putting	It	All	Together

Here	is	an	example	of	the	complete	cycle	of	declaring,	opening,	fetching,	and	closing	a
cursor,	including	use	of	cursor	attributes.

For	Example		ch11_4.sql
Click	here	to	view	code	image

1>	DECLARE

2>			v_sid				student.student_id%TYPE;

3>			CURSOR	c_student	IS

4>					SELECT	student_id

5>							FROM	student

6>						WHERE	student_id	<	110;

7>	BEGIN

8>			OPEN	c_student;

9>			LOOP

10>				FETCH	c_student	INTO	v_sid;

11>				EXIT	WHEN	c_student%NOTFOUND;

12>						DBMS_OUTPUT.PUT_LINE(‘STUDENT	ID	:	‘||v_sid);

13>		END	LOOP;

14>		CLOSE	c_student;

15>	EXCEPTION

16>		WHEN	OTHERS

17>		THEN

18>				IF	c_student%ISOPEN

19>				THEN

20>						CLOSE	c_student;

21>				END	IF;

22>	END;

This	example	illustrates	a	complete	cursor	fetch	loop,	in	which	multiple	rows	of	data
are	returned	from	the	query.	The	cursor	is	declared	in	the	declaration	section	of	the	block
(lines	1–6)	just	like	other	identifiers.	In	the	executable	section	of	the	block	(lines	7–15),	a
cursor	is	opened	using	the	OPEN	(line	8)	statement.	Because	the	cursor	returns	multiple
rows,	a	loop	is	used	to	assign	returned	data	to	the	variables	with	a	FETCH	statement	(line
10).	Because	the	loop	statement	has	no	other	means	of	termination,	an	exit	condition	must
be	specified.	In	this	case,	one	of	the	attributes	for	the	cursor	is	%NOTFOUND	(line	11).	The
cursor	is	then	closed	to	free	the	memory	allocation	(line	14).	Additionally,	if	the	exception
handler	is	called,	a	check	is	made	to	see	if	the	cursor	is	open	(line	18)	or	closed	(line	20).

This	example	is	now	modified	to	make	use	of	the	cursor	attributes	%FOUND	and
%ROWCOUNT.

For	Example		ch11_5.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

			v_sid				student.student_id%TYPE;

			CURSOR	c_student	IS

					SELECT	student_id

							FROM	student

						WHERE	student_id	<	110;

	BEGIN

			OPEN	c_student;

			LOOP

				FETCH	c_student	INTO	v_sid;

				IF	c_student%FOUND	THEN

				DBMS_OUTPUT.PUT_LINE

						(‘Just	FETCHED	row	‘

								||TO_CHAR(c_student%ROWCOUNT)||

								’	Student	ID:	‘||v_sid);

				ELSE

						EXIT;

				END	IF;

		END	LOOP;

		CLOSE	c_student;

	EXCEPTION

		WHEN	OTHERS

		THEN

				IF	c_student%ISOPEN

				THEN

						CLOSE	c_student;

				END	IF;

END;

In	this	script,	there	has	been	a	modification	to	the	loop	structure.	Instead	of	relying	on
an	exit	condition,	an	IF	statement	is	used.	The	IF	statement	makes	use	of	the	cursor
attribute	%FOUND,	which	returns	TRUE	when	a	row	is	“found”	in	the	cursor	and	FALSE
when	it	is	not	found.	The	attribute	%ROWCOUNT	then	returns	a	number,	which	is	the
current	row	number	of	the	cursor.

The	next	example	demonstrates	how	to	fetch	a	cursor	that	has	taken	data	from	the
student	table	into	the	cursor	variable	%ROWTYPE.	The	cursor	selects	only	those
students	with	a	student_id	less	than	110.	The	columns	are	the	STUDENT_ID,
LAST_NAME,	FIRST_NAME,	and	a	count	of	the	number	of	classes	the	student	is	enrolled
in.	The	cursor	is	fetched	with	a	loop	and	then	all	of	the	columns	are	output.

For	Example		ch11_6.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		CURSOR	c_student_enroll	IS

				SELECT	s.student_id,	first_name,	last_name,

								COUNT(*)	enroll,

								(CASE

											WHEN	count(*)	=	1	Then	‘	class.’

											WHEN	count(*)	is	null	then

																								’	no	classes.’

											ELSE	‘	classes.’

									END)	class

						FROM	student	s,	enrollment	e

					WHERE	s.student_id	=	e.student_id

							AND	s.student_id	<110

					GROUP	BY	s.student_id,	first_name,	last_name;

		r_student_enroll			c_student_enroll%ROWTYPE;

BEGIN

		OPEN	c_student_enroll;

		LOOP

				FETCH	c_student_enroll	INTO	r_student_enroll;

				EXIT	WHEN	c_student_enroll%NOTFOUND;

				DBMS_OUTPUT.PUT_LINE(‘Student	INFO:	ID	‘||

						r_student_enroll.student_id||’	is	‘||

						r_student_enroll.first_name||	‘	‘	||

						r_student_enroll.last_name||

						’	is	enrolled	in	‘||r_student_enroll.enroll||

						r_student_enroll.class);

		END	LOOP;

		CLOSE	c_student_enroll;

EXCEPTION

		WHEN	OTHERS

		THEN

			IF	c_student_enroll	%ISOPEN

				THEN

			CLOSE	c_student_enroll;

			END	IF;

END;

In	the	declaration	section,	a	cursor	c_student_enroll	is	defined	as	well	as	a
record,	which	is	the	type	of	a	row	of	the	cursor.	The	cursor	loop	structure	makes	use	of	an
exit	condition	with	the	%NOTFOUND	cursor	attribute.	When	there	are	no	more	rows,	the
%NOTFOUND	attribute	will	be	TRUE	and	will	cause	the	loop	to	exit.	While	the	cursor	is
open	and	the	loop	is	processing,	it	will	fetch	a	row	of	the	cursor	in	a	record,	one	at	a	time.
The	DBMS	output	will	cause	each	row	to	be	displayed	to	the	screen.	Finally,	the	cursor	is
closed.	An	exception	clause	will	also	close	the	cursor	if	any	error	is	raised.

Assorted	Tips	on	Cursors

Cursor	SELECT	LIST

Match	the	select	list	with	PL/SQL	variables	or	PL/SQL	record	components.

The	number	of	variables	must	be	equal	to	the	number	of	columns	or
expressions	in	the	select	list.	The	number	of	the	components	of	a	record	must
match	the	columns	or	expressions	in	the	select	list.

Cursor	Scope

The	scope	of	a	cursor	declared	in	the	main	block	(or	an	enclosing	block)
extends	to	the	sub-blocks.

Expressions	in	a	Cursor	SELECT	List

PL/SQL	variables,	expressions,	and	even	functions	can	be	included	in	the
cursor	select	list.

Column	Aliases	in	Cursors

An	alternative	name	you	provide	to	a	column	or	expression	in	the	select	list.
In	an	explicit	cursor	column,	aliases	are	required	for	calculated	columns	when

	You	FETCH	into	a	record	declared	with	a	%ROWTYPE	declaration	against	that
cursor.

	You	want	to	reference	the	calculated	column	in	the	program.

Lab	11.3:	Cursor	FOR	LOOPS

After	this	lab,	you	will	be	able	to

	Make	Use	of	Cursor	FOR	LOOPS

Making	Use	of	Cursor	FOR	LOOPS
An	alternative	method	of	handling	cursors	is	called	the	cursor	FOR	LOOP	because	of	the
simplified	syntax	that	is	used.	When	using	the	cursor	FOR	LOOP,	the	process	of	opening,
fetching,	and	closing	is	handled	implicitly.	This	makes	the	blocks	much	simpler	to	code
and	easier	to	maintain.

The	cursor	FOR	LOOP	specifies	a	sequence	of	statements	to	be	repeated	once	for	each
row	returned	by	the	cursor.	You	can	use	a	cursor	FOR	LOOP	when	you	need	to	fetch	and
process	each	and	every	record	from	a	cursor	until	you	want	to	stop	processing	and	exit	the
loop.

To	make	use	of	this	column,	you	need	to	create	a	new	table	called	table_log	with
the	following	script:
Click	here	to	view	code	image

create	table	table_log

							(description	VARCHAR2(250));

Then	run	this	script:

For	Example		ch11_7.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	c_student	IS

				SELECT	student_id,	last_name,	first_name

						FROM	student

					WHERE	student_id	<	110;

BEGIN

		FOR	r_student	IN	c_student

		LOOP

				INSERT	INTO	table_log

						VALUES(r_student.last_name);

		END	LOOP;

END;

SELECT	*	from	table_log;

The	following	PL/SQL	block	reduces	by	5	percent	the	cost	of	all	courses	having	an
enrollment	of	eight	or	more	students.	It	makes	use	of	a	cursor	FOR	LOOP	that	updates	the
course	table	with	the	discounted	cost.

For	Example		ch11_8.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	c_group_discount	IS

				SELECT	DISTINCT	s.course_no

						FROM	section	s,	enrollment	e

					WHERE	s.section_id	=	e.section_id

						GROUP	BY	s.course_no,	e.section_id,	s.section_id

					HAVING	COUNT(*)>=8;

BEGIN

		FOR	r_group_discount	IN	c_group_discount		LOOP

				UPDATE	course

							SET	cost	=	cost	*	.95

					WHERE	course_no	=	r_group_discount.course_no;

		END	LOOP;

		COMMIT;

END;

The	cursor	c_group_discount	is	declared	in	the	declaration	section.	The	proper
SQL	is	used	to	generate	the	SELECT	statement	to	answer	the	question	given.	The	cursor	is
processed	in	a	FOR	LOOP	in	each	iteration	of	the	loop	and	the	SQL	update	statement	is
executed.	As	a	consequence,	the	cursor	does	not	have	to	be	opened,	fetched,	and	closed.
Also,	a	cursor	attribute	does	not	have	to	be	used	to	create	an	exit	condition	for	the	loop
that	is	processing	the	cursor.

Lab	11.4:	Nested	Cursors

After	this	lab,	you	will	be	able	to

	Process	Nested	Cursors

Cursors	can	be	nested	inside	each	other.	Although	this	may	sound	complex,	it	is	really	just
a	loop	inside	a	loop,	much	like	nested	loops,	which	were	covered	in	previous	chapters.	If
you	have	one	parent	cursor	and	two	child	cursors,	then	each	time	the	parent	cursor	makes
a	single	loop,	it	will	loop	through	each	child	cursor	once	and	then	begin	a	second	round.	In
the	next	two	examples,	you	will	encounter	a	nested	cursor	with	a	single	child	cursor.

Processing	Nested	Cursors
In	the	following	example,	line	numbers	were	added	so	that	individual	lines	could	be
referenced	in	the	explanation	that	follows.	You	will	have	to	remove	the	line	numbers	when
you	run	the	code.

For	Example		ch11_9.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

	1			DECLARE

	2					v_zip	zipcode.zip%TYPE;

	3					v_student_flag	CHAR;

	4					CURSOR	c_zip	IS

	5							SELECT	zip,	city,	state

	6									FROM	zipcode

	7								WHERE	state	=	‘CT’;

	8					CURSOR	c_student	IS

	9							SELECT	first_name,	last_name

10									FROM	student

11								WHERE	zip	=	v_zip;

12			BEGIN

13					FOR	r_zip	IN	c_zip

14					LOOP

15							v_student_flag	:=	‘N’;

16							v_zip	:=	r_zip.zip;

17							DBMS_OUTPUT.PUT_LINE(CHR(10));

18							DBMS_OUTPUT.PUT_LINE(‘Students	living	in	‘||

19									r_zip.city);

20							FOR	r_student	in	c_student

21							LOOP

22									DBMS_OUTPUT.PUT_LINE(

23											r_student.first_name||

24											’	‘||r_student.last_name);

25									v_student_flag	:=	‘Y’;

26							END	LOOP;

27							IF	v_student_flag	=	‘N’

28									THEN

29									DBMS_OUTPUT.PUT_LINE

													(‘No	students	for	this	ZIP	code’);

30							END	IF;

31					END	LOOP;

32		END;

There	are	two	cursors	in	the	example:	a	cursor	of	the	ZIP	codes	and	a	cursor	of	the	list
of	students.	The	variable	v_zip	is	initialized	in	line	16	to	be	the	ZIP	code	of	the	current
record	of	the	c_zip	cursor.	The	c_student	cursor	ties	in	the	c_zip	cursor	by	means
of	this	variable.	Thus,	when	the	cursor	is	processed	in	lines	20–26,	it	retrieves	students
who	have	the	ZIP	code	of	the	current	record	for	the	parent	cursor.	The	parent	cursor	is
processed	in	lines	13–31.	Each	iteration	of	the	parent	cursor	executes	the	DBMS_OUTPUT
statement	in	lines	16	and	17	only	once.	The	DBMS_OUTPUT	statement	in	line	22	is
executed	once	for	each	iteration	of	the	child	loop,	producing	a	line	of	output	for	each
student.	The	DBMS_OUTPUT.PUT_LINE	statement	in	line	29	executes	only	if	the	inner
loop	did	not	execute;	this	is	accomplished	by	setting	a	variable	v_student_flag.	The
variable	is	set	to	N	in	the	beginning	of	the	parent	loop.	If	the	child	loop	executes	at	least
once,	the	variable	will	be	set	to	Y.	After	the	child	loop	is	closed,	a	check	is	made	with	an
IF	statement	to	determine	the	value	of	the	variable.	If	it	is	still	N,	then	it	can	be	safely
concluded	that	the	inner	loop	did	not	process.	This	will	then	allow	the	last
DBMS_OUTPUT.PUT_LINE	statement	to	execute.	Nested	cursors	are	more	often
parameterized.	Parameters	in	cursors	are	explained	in	depth	in	Lab	12.2,	“Complex	Nested
Cursors.”

The	next	example	is	a	PL/SQL	block	with	two	cursor	FOR	LOOP.	The	parent	cursor
retrieves	the	student_id,	first_name,	and	last_name	from	the	student	table
for	students	with	a	student_id	less	than	110	and	outputs	one	line	with	this
information.	For	each	student,	the	child	cursor	loops	through	all	the	courses	in	which	the
student	is	enrolled,	outputting	the	course_no	and	the	description.

For	Example		ch11_10.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_sid	student.student_id%TYPE;

		CURSOR	c_student	IS

				SELECT	student_id,	first_name,	last_name

						FROM	student

					WHERE	student_id	<	110;

		CURSOR	c_course	IS

				SELECT	c.course_no,	c.description

						FROM	course	c,	section	s,	enrollment	e

					WHERE	c.course_no	=	s.course_no

							AND	s.section_id	=	e.section_id

							AND	e.student_id	=	v_sid;

BEGIN

		FOR	r_student	IN	c_student

		LOOP

				v_sid	:=	r_student.student_id;

				DBMS_OUTPUT.PUT_LINE(chr(10));

				DBMS_OUTPUT.PUT_LINE(‘	The	Student	‘||

						r_student.student_id||’	‘||

						r_student.first_name||’	‘||

						r_student.last_name);

				DBMS_OUTPUT.PUT_LINE(‘	is	enrolled	in	the	‘||

						‘following	courses:	‘);

				FOR	r_course	IN	c_course

				LOOP

						DBMS_OUTPUT.PUT_LINE(r_course.course_no||

									’		’||r_course.description);

				END	LOOP;

		END	LOOP;

END;

The	SELECT	statements	for	the	two	cursors	are	defined	in	the	declaration	section	of	the
PL/SQL	block.	A	variable	to	store	the	student_id	from	the	parent	cursor	is	also
declared.	The	course	cursor	is	the	child	cursor.	Because	it	makes	use	of	the	variable
v_sid,	the	variable	must	be	declared	first.	Both	cursors	are	processed	with	a	FOR	LOOP,
which	eliminates	the	need	for	OPEN,	FETCH,	and	CLOSE	statements.	When	the	parent
student	loop	is	processed,	the	first	step	is	to	initialize	the	variable	v_sid,	and	the	value	is
then	used	when	the	child	loop	is	processed.	A	DBMS_OUTPUT	statement	is	used	so	that
the	display	is	generated	for	each	cursor	loop.	The	parent	cursor	will	display	the	student
name	once,	and	the	child	cursor	will	display	the	name	of	each	course	in	which	the	student
is	enrolled.

The	following	example	shows	a	nested	cursor:

For	Example		ch11_11.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_amount	course.cost%TYPE;

		v_instructor_id		instructor.instructor_id%TYPE;

		CURSOR	c_inst	IS

				SELECT	first_name,	last_name,	instructor_id

						FROM	instructor;

		CURSOR	c_cost	IS

				SELECT	c.cost

						FROM	course	c,	section	s,	enrollment	e

					WHERE	s.instructor_id	=	v_instructor_id

							AND	c.course_no	=	s.course_no

							AND	s.section_id	=	e.section_id;

BEGIN

		FOR	r_inst	IN	c_inst

		LOOP

					v_instructor_id	:=	r_inst.instructor_id;

					v_amount	:=	0;

					DBMS_OUTPUT.PUT_LINE(

							‘Amount	generated	by	instructor	‘||

							r_inst.first_name||’	‘||r_inst.last_name

							||’	is’);

					FOR	r_cost	IN	c_cost

					LOOP

							v_amount	:=	v_amount	+	NVL(r_cost.cost,	0);

					END	LOOP;

					DBMS_OUTPUT.PUT_LINE

					(‘				’||TO_CHAR(v_amount,’$999,999’));

		END	LOOP;

END;

The	declaration	section	contains	a	declaration	for	two	variables.	The	first	is	v_amount
of	the	data	type	matching	that	of	the	cost	in	the	course	table;	the	second	is	the
v_instructor_id	of	the	data	type	matching	the	instructor_id	in	the
instructor	table.	There	are	also	two	declarations	for	two	cursors.	The	first	is	for
c_inst,	which	consists	of	the	first_name,	last_name,	and	instructor_id	for
an	instructor	from	the	instructor	table.	The	second	cursor,	c_cost,	will	produce	a
result	set	of	the	cost	of	the	course	taken	for	each	student	enrolled	in	a	course	given	by	the
instructor	that	matches	the	variable	v_instructor_id.	These	two	cursors	will	be	run
in	nested	fashion.

First,	the	cursor	c_inst	is	opened	in	a	FOR	LOOP.	The	value	of	the	variable
v_instructor_id	is	initialized	to	match	the	instructor_id	of	the	current	row	of
the	c_inst	cursor.	The	variable	v_amount	is	initialized	to	0.

The	second	cursor	is	opened	within	the	loop	for	the	first	cursor.	Consequently,	for	each
iteration	of	the	cursor	c_inst,	the	second	cursor	will	be	opened,	fetched,	and	closed.
The	second	cursor	will	loop	through	all	the	costs	generated	by	each	student	enrolled	in	a
course	for	the	instructor,	which	is	the	current	value	of	the	c_inst	cursor.	Each	time	the
nest	loop	iterates,	it	will	increase	the	variable	v_amount	by	adding	the	current	cost	in	the
c_cost	loop.

Prior	to	opening	the	c_cost	loop,	a	DBMS_OUTPUT	statement	displays	the	instructor
name.	After	the	c_cost	cursor	loop	is	closed,	a	DBMS_OUTPUT	statement	displays	the
total	amount	generated	by	all	the	enrollments	of	the	current	instructor.

The	result	set	would	be	as	follows:
Click	here	to	view	code	image

Amount	generated	by	instructor	Fernand	Hanks	is

$49,110

Amount	generated	by	instructor	Tom	Wojick	is

$24,582

Amount	generated	by	instructor	Nina	Schorin	is

$43,319

Amount	generated	by	instructor	Gary	Pertez	is

$29,317

Amount	generated	by	instructor	Anita	Morris	is

$18,662

Amount	generated	by	instructor	Todd	Smythe	is

$21,092

Amount	generated	by	instructor	Marilyn	Frantzen	is

$34,311

Amount	generated	by	instructor	Charles	Lowry	is

$37,512

Amount	generated	by	instructor	Rick	Chow	is

$0

Amount	generated	by	instructor	Irene	Willig	is

$0

In	this	example,	the	nested	cursor	is	tied	to	the	current	row	of	the	outer	cursor	by	means
of	the	variable	v_instructor_id.	A	more	common	way	of	handling	this	task	is	to
pass	a	parameter	to	a	cursor.	You	will	learn	more	about	how	to	achieve	this	in	Chapter	12.

Summary
In	this	chapter	you	learned	how	to	make	use	of	various	types	of	cursors.	First	you	learned
how	the	Oracle	platform	processes	an	implicit	cursor,	and	then	you	learned	all	of	the	steps
required	to	use	an	explicit	cursor.	Additionally,	you	learned	about	the	various	record	types
and	saw	how	to	use	them	in	the	context	of	a	cursor.	Finally,	you	learned	about	three	types
of	cursor	loops:	a	regular	loop,	a	FOR	LOOP,	and	nested	cursors.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

12.	Advanced	Cursors

In	this	chapter,	you	will	learn	about

	Parameterized	Cursors

	Complex	Nested	Cursors

	FOR	UPDATE	and	WHERE	CURRENT	Cursors

In	Chapter	11,	you	mastered	the	basic	concepts	of	cursors.	In	this	chapter,	you	will	learn
how	to	dynamically	alter	the	WHERE	clause	of	a	cursor	by	passing	parameters	when	you
call	the	cursor.	In	Chapter	21,	you	will	take	cursors	to	another	level—that	is,	in	the	context
of	a	package,	you	will	learn	to	implement	cursor	variables.

Lab	12.1:	Parameterized	Cursors

After	this	lab,	you	will	be	able	to

	Use	Parameters	in	a	Cursor

Cursors	with	Parameters
A	cursor	can	be	declared	with	parameters.	This	approach	enables	a	cursor	to	generate	a
specific	result	set	that	is	simultaneously	narrow	and	reusable.	A	cursor	of	all	the	data	from
the	ZIPCODE	table	may	be	very	useful,	for	instance,	but	it	would	be	even	more	useful	for
certain	data	processing	if	it	held	information	for	only	one	state.	At	this	point,	you	know
how	to	create	such	a	cursor.	But	wouldn’t	it	be	more	useful	if	you	could	create	a	cursor
that	could	accept	a	parameter	of	a	state	and	then	run	through	only	the	city	and	ZIP	code
for	that	state?

For	Example
Click	here	to	view	code	image

CURSOR	c_zip	(p_state	IN	zipcode.state%TYPE)	IS

		SELECT	zip,	city,	state

				FROM	zipcode

			WHERE	state	=	p_state;

The	main	points	to	keep	in	mind	for	parameters	in	cursors	are	as	follows:

	Cursor	parameters	make	the	cursor	more	reusable.

	Cursor	parameters	can	be	assigned	default	values.

	The	scope	of	the	cursor	parameters	is	local	to	the	cursor.

	The	mode	of	the	parameters	can	only	be	IN.

When	a	cursor	has	been	declared	as	taking	a	parameter,	it	must	be	called	with	a	value
for	that	parameter.	The	c_zip	cursor	that	was	just	declared	is	called	as	follows:

OPEN	c_zip	(parameter_value)

The	same	cursor	could	be	opened	with	a	cursor	FOR	loop	as	follows:
FOR	r_zip	IN	c_zip(‘NY’)

LOOP	…

The	cursor	from	the	previous	example	is	expanded	into	a	parameterized	cursor	in	the
next	example.	This	example	includes	a	DBMS_OUTPUT	line	that	displays	the	ZIP	code,
city,	and	state.	This	is	identical	to	the	process	we	used	earlier	in	cursor	FOR	loops,	except
that	now	when	the	cursor	is	opened,	a	parameter	is	passed.

For	Example		ch12_1.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	c_zip	(p_state	IN	zipcode.state%TYPE)	IS

				SELECT	zip,	city,	state

						FROM	zipcode

					WHERE	state	=	p_state

BEGIN

		FOR	r_zip	IN	c_zip(‘NJ’)

		LOOP…

				DBMS_OUTPUT.PUT_LINE(r_zip.city||

							’	‘||r_zip.zip’);

		END	LOOP;

END;

To	complete	the	block,	the	cursor	declaration	is	surrounded	by	DECLARE	and	BEGIN.
The	cursor	is	opened	by	passing	the	parameter	“NJ,”	and	then,	for	each	iteration	of	the
cursor	loop,	the	ZIP	code	and	the	city	are	displayed	by	using	the	built-in	package
DBMS_OUTPUT.

Lab	12.2:	Complex	Nested	Cursors

After	this	lab,	you	will	be	able	to

	Use	Complex	Nested	Cursors

Nesting	cursors	allows	for	looping	through	data	at	various	stages.	For	example,	one	cursor
might	loop	through	ZIP	codes.	When	it	hits	one	ZIP	code,	a	second	cursor	might	be	nested
that	loops	through	students	who	live	in	that	ZIP	code.	Working	through	a	specific	example
will	help	explain	this	approach	in	more	detail.

The	following	PL/SQL	code	is	complex.	It	involves	all	of	the	topics	covered	so	far	in
this	chapter.	There	is	a	nested	cursor	with	three	levels,	meaning	a	grandparent	cursor,	a
parent	cursor,	and	a	child	cursor.

For	Example		ch12_2.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

		1		DECLARE

		2				CURSOR	c_student	IS

		3						SELECT	first_name,	last_name,	student_id

		4								FROM	student

		5							WHERE	last_name	LIKE	‘J%’;

		6				CURSOR	c_course

		7					(i_student_id	IN	student.student_id%TYPE)

		8				IS

		9						SELECT	c.description,	s.section_id	sec_id

	10								FROM	course	c,	section	s,	enrollment	e

	11							WHERE	e.student_id	=	i_student_id

	12									AND	c.course_no	=	s.course_no

	13									AND	s.section_id	=	e.section_id;

	14				CURSOR	c_grade(i_section_id	IN	section.section_id%TYPE,

	15																			i_student_id	IN	student.student_id%TYPE)

	16							IS

	17							SELECT	gt.description	grd_desc,

	18										TO_CHAR

	19														(AVG(g.numeric_grade),	‘999.99’)	num_grd

	20									FROM	enrollment	e,

	21														grade	g,	grade_type	gt

	22								WHERE	e.section_id	=	i_section_id

	23										AND	e.student_id	=	g.student_id

	24										AND	e.student_id	=	i_student_id

	25										AND	e.section_id	=	g.section_id

	26										AND	g.grade_type_code	=	gt.grade_type_code

	27								GROUP	BY	gt.description	;

	28		BEGIN

	29				FOR	r_student	IN	c_student

	30				LOOP

	31					DBMS_OUTPUT.PUT_LINE(CHR(10));

	32					DBMS_OUTPUT.PUT_LINE(r_student.first_name||

	33								’		’||r_student.last_name);

	34					FOR	r_course	IN	c_course(r_student.student_id)

	35					LOOP

	36							DBMS_OUTPUT.PUT_LINE	(‘Grades	for	course	:’||

	37										r_course.description);

	38							FOR	r_grade	IN	c_grade(r_course.sec_id,

	39																									r_student.student_id)

	40							LOOP

	41									DBMS_OUTPUT.PUT_LINE(r_grade.num_grd||

	42											’		’||r_grade.grd_desc);

	43							END	LOOP;

	44						END	LOOP;

	45					END	LOOP;

	46		END;

The	grandparent	cursor,	c_student,	is	declared	in	lines	2–5.	It	takes	no	parameters
and	is	a	collection	of	students	with	a	last	name	beginning	with	“J”.	The	parent	cursor	is
declared	in	lines	6–13.	This	cursor,	c_course,	takes	the	parameter	of	the	student_ID
to	generate	a	list	of	courses	taken	by	that	student.	The	child	cursor,	c_grade,	is	declared
in	lines	14–27.	It	takes	two	parameters,	the	section_id	and	the	student_id.	In	this
way	it	can	generate	an	average	of	the	different	grade	types	for	that	student	for	that	course.

The	grandparent	cursor	loop	begins	on	line	29,	and	only	the	student	name	is	displayed
with	DBMS_OUTPUT.	The	parent	cursor	loop	begins	on	line	35.	It	takes	the	parameter	of
the	student_id	from	the	grandparent	cursor.	Only	the	description	of	the	course	is
displayed.	The	child	cursor	loop	begins	on	line	40.	It	takes	the	parameter	of	the
section_id	from	the	parent	cursor	and	the	student_id	from	the	grandparent	cursor.

The	grades	are	then	displayed.	The	grandparent	cursor	loop	ends	on	line	45,	the	parent
cursor	on	line	44,	and,	finally,	the	child	cursor	on	line	43.

The	output	of	this	script	is	a	student	name,	followed	by	the	courses	that	student	is	taking
and	the	average	grade	he	or	she	has	earned	for	each	grade	type.

Lab	12.3:	FOR	UPDATE	and	WHERE	CURRENT	Cursors

After	this	lab,	you	will	be	able	to

	Use	a	FOR	UPDATE	Cursor

	Use	WHERE	CURRENT	in	a	Cursor

FOR	UPDATE	Cursor
The	cursor	FOR	UPDATE	clause	is	used	with	a	cursor	only	when	you	want	to	update
tables	in	the	database.	Generally,	when	you	execute	a	SELECT	statement,	you	are	not
locking	any	rows.	The	purpose	of	using	the	FOR	UPDATE	clause	is	to	lock	the	rows	of
the	tables	that	you	want	to	update,	so	that	another	user	cannot	perform	an	update	until	you
complete	your	update	and	release	the	lock.	The	next	COMMIT	or	ROLLBACK	statement
releases	the	lock.

The	FOR	UPDATE	clause	will	change	the	manner	in	which	the	cursor	operates	in	only
a	few	respects.	When	you	open	a	cursor,	all	rows	that	meet	the	restriction	criteria	are
identified	as	part	of	the	active	set.	Using	the	FOR	UPDATE	clause	will	lock	these	rows
that	have	been	identified	in	the	active	set.	If	the	FOR	UPDATE	clause	is	used,	then	rows
may	not	be	fetched	from	the	cursor	until	a	COMMIT	has	been	issued.	It	is	important	for
you	to	consider	where	to	place	the	COMMIT	statement.	Be	careful	to	consider	the	issues
discussed	in	relation	to	transaction	management	in	Chapter	3.

The	syntax	is	simply	to	add	FOR	UPDATE	to	the	end	of	the	cursor	definition.	If
multiple	items	are	being	selected	but	you	want	to	lock	only	one	of	them,	then	end	the
cursor	definition	with	the	following	syntax:

FOR	UPDATE	OF	<item_name>

For	Example		ch12_3.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	c_course	IS

				SELECT	course_no,	cost

						FROM	course	FOR	UPDATE;

BEGIN

		FOR	r_course	IN	c_course

		LOOP

				IF	r_course.cost	<	2500

				THEN

						UPDATE	course

									SET	cost	=	r_course.cost	+	10

							WHERE	course_no	=	r_course.course_no;

				END	IF;

		END	LOOP;

END;

This	example	shows	how	to	update	the	cost	of	all	courses	with	a	cost	of	less	than	2500.	It
will	increment	each	of	these	costs	by	10.

Several	issues	must	be	taken	into	account	with	FOR	UPDATE	cursors	in	terms	of	where
to	place	a	COMMIT	statement.	The	following	example	demonstrates	one	way	of	handling
this	issue.

For	Example		ch12_4.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	c_grade(

				i_student_id	IN	enrollment.student_id%TYPE,

				i_section_id	IN	enrollment.section_id%TYPE)

		IS

				SELECT	final_grade

						FROM	enrollment

					WHERE	student_id	=	i_student_id

							AND	section_id	=	i_section_id

					FOR	UPDATE;

		CURSOR	c_enrollment	IS

				SELECT	e.student_id,	e.section_id

						FROM	enrollment	e,	section	s

					WHERE	s.course_no	=	135

							AND	e.section_id	=	s.section_id;

BEGIN

		FOR	r_enroll	IN	c_enrollment

		LOOP

				FOR	r_grade	IN	c_grade(r_enroll.student_id,

																											r_enroll.section_id)

				LOOP

						UPDATE	enrollment

									SET	final_grade		=	90

							WHERE	student_id	=	r_enroll.student_id

									AND	section_id	=	r_enroll.section_id;

				END	LOOP;

		END	LOOP;

END;

Placing	a	COMMIT	statement	after	each	update	can	be	costly.	If	there	are	a	lot	of
updates	and	the	COMMIT	comes	after	the	block	loop,	however,	there	is	a	risk	of	a	rollback
segment	not	being	large	enough.	Normally,	the	COMMIT	statement	would	go	after	the
loop,	except	when	the	transaction	count	is	high;	in	such	a	situation,	you	might	want	to
code	something	that	does	a	COMMIT	for	each	10,000	records.	If	this	script	were	part	of	a
large	procedure,	you	might	want	to	put	a	SAVEPOINT	after	the	loop.	Then,	if	you	need	to
roll	back	this	update	at	a	later	point,	it	would	be	an	easy	task.

If	this	example	were	run,	the	final_grade	for	all	students	enrolled	in	course	135
would	be	updated	to	90.	There	are	two	cursors	here.	One	cursor	captures	the	students	who
are	enrolled	in	course	135	and	places	them	into	the	active	set.	The	other	cursor	takes	the
student_id	and	the	section_id	from	this	active	set,	selects	the	corresponding
final_grade	from	the	enrollment	table,	and	locks	the	entire	enrollment	table.	The

enrollment	cursor	loop	is	begun	first,	and	it	passes	the	student_id	and	the
section_id	as	IN	parameters	to	the	second	cursor	loop	of	the	c_grade	cursor,	which
performs	the	update.	A	COMMIT	statement	should	be	added	immediately	after	the	update
to	ensure	that	each	update	is	committed	to	the	database.

FOR	UPDATE	OF	in	a	Cursor
FOR	UPDATE	OF	can	be	used	when	creating	a	cursor	for	an	update	operation	that	is
based	on	multiple	tables.	FOR	UPDATE	OF	locks	the	rows	of	a	table	that	both	contain
one	of	the	specified	columns	and	are	members	of	the	active	set.	In	other	words,	it	is	the
means	of	specifying	which	table	you	want	to	lock.	If	the	FOR	UPDATE	OF	clause	is
used,	then	rows	may	not	be	fetched	from	the	cursor	until	a	COMMIT	has	been	issued.

For	Example		ch12_5.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	c_stud_zip	IS

				SELECT	s.student_id,	z.city

						FROM	student	s,	zipcode	z

					WHERE	z.city	=	‘Brooklyn’

							AND	s.zip	=	z.zip

					FOR	UPDATE	OF	phone;

BEGIN

		FOR	r_stud_zip	IN	c_stud_zip

		LOOP

				UPDATE	student

							SET	phone	=	‘718’||SUBSTR(phone,4)

					WHERE	student_id	=	r_stud_zip.student_id;

		END	LOOP;

END;

This	example	updates	the	phone	numbers	of	students	living	in	Brooklyn	by	changing
the	area	code	to	718.	The	cursor	declaration	locks	the	phone	column	of	the	student	table.
This	lock	is	never	released,	however,	because	there	is	no	COMMIT	or	ROLLBACK
statement.

WHERE	CURRENT	OF	in	a	Cursor
Use	WHERE	CURRENT	OF	when	you	want	to	update	the	most	recently	fetched	row.	This
clause	can	only	be	used	with	a	FOR	UPDATE	OF	cursor.	The	advantage	of	the	WHERE
CURRENT	OF	clause	is	that	it	enables	you	to	eliminate	the	WHERE	clause	in	the	UPDATE
statement.

For	Example		ch12_6.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	c_stud_zip	IS

				SELECT	s.student_id,	z.city

						FROM	student	s,	zipcode	z

					WHERE	z.city	=	‘Brooklyn’

							AND	s.zip	=	z.zip

					FOR	UPDATE	OF	phone;

BEGIN

		FOR	r_stud_zip	IN	c_stud_zip

		LOOP

				DBMS_OUTPUT.PUT_LINE(r_stud_zip.student_id);

				UPDATE	student

							SET	phone	=	‘718’||SUBSTR(phone,4)

					WHERE	CURRENT	OF	c_stud_zip;

		END	LOOP;

END;

These	last	two	examples	perform	the	same	update.	The	WHERE	CURRENT	OF	clause
allows	you	to	eliminate	a	match	in	the	UPDATE	statement,	because	the	update	is	being
performed	for	the	current	record	of	the	cursor	only.

Did	You	Know?

The	FOR	UPDATE	and	WHERE	CURRENT	OF	syntax	can	be	used	with
cursors	that	are	performing	a	delete	as	well	as	an	update.

Summary
The	chapter	explored	various	advanced	topics	involving	cursors.	First,	you	learned	how	to
pass	parameters	to	cursors	to	restrict	the	result	set	of	a	cursor.	Then,	you	learned	how	to
nest	cursors.	Finally,	you	saw	the	syntax	for	creating	cursors	that	make	database	updates.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

13.	Triggers

In	this	chapter,	you	will	learn	about

	What	Triggers	Are

	Types	of	Triggers

In	Chapter	1,	you	encountered	the	concept	of	named	PL/SQL	blocks	such	as	procedures,
functions,	and	packages	that	can	be	stored	in	the	database.	In	this	chapter,	you	will	learn
about	another	type	of	named	PL/SQL	block	called	a	database	trigger.	You	will	also	learn
about	different	characteristics	of	triggers	and	their	usage	in	the	database.

Lab	13.1:	What	Triggers	Are

After	this	lab,	you	will	be	able	to

	Define	a	Database	Trigger

	Use	BEFORE	and	AFTER	Triggers

	Employ	Autonomous	Transactions

Database	Trigger
A	database	trigger	is	a	named	PL/SQL	block	that	is	stored	in	a	database	and	executed
implicitly	when	a	triggering	event	occurs.	The	act	of	executing	a	trigger	is	referred	to	as
firing	the	trigger.	A	triggering	event	can	be	any	of	the	following:

	A	DML	(for	example,	INSERT,	UPDATE,	or	DELETE)	statement	executed	against	a
database	table.	Such	trigger	can	fire	before	or	after	a	triggering	event.	For	example,
if	you	have	defined	a	trigger	to	fire	before	an	INSERT	statement	on	the	STUDENT
table,	this	trigger	fires	each	time	before	you	insert	a	row	in	the	STUDENT	table.

	A	DDL	(for	example,	CREATE	or	ALTER)	statement	executed	either	by	a	particular
user	against	a	schema	or	by	any	user.	Such	triggers	are	often	used	for	auditing
purposes	and	are	specifically	helpful	to	Oracle	database	administrators.	They	can
record	various	schema	changes,	including	when	those	changes	were	made	and	by
which	user.

	A	system	event	such	as	startup	or	shutdown	of	the	database.

	A	user	event	such	as	login	and	logoff.	For	example,	you	can	define	a	trigger	that
fires	after	a	login	on	a	database	and	that	records	the	username	and	time	of	login.

The	general	syntax	for	creating	a	trigger	is	shown	in	Listing	13.1	(the	reserved	words
and	phrases	surrounded	by	brackets	are	optional).

Listing	13.1	General	Syntax	for	Creating	a	Trigger

Click	here	to	view	code	image

CREATE	[OR	REPLACE]	[EDITIONABLE|NONEDITIONABLE]	TRIGGER	trigger_name

{BEFORE|AFTER}	triggering_event	ON	table_name

[FOR	EACH	ROW]

[FOLLOWS|PRECEDES	another_trigger]

[ENABLE/DISABLE]

[WHEN	condition]

DECLARE

		Declaration	statements

BEGIN

		Executable	statements

EXCEPTION

		Exception-handling	statements

END;

The	reserved	word	CREATE	specifies	that	you	are	creating	a	new	trigger.	The	reserved
word	REPLACE	specifies	that	you	are	modifying	an	existing	trigger.	REPLACE	is
optional.	Note,	however,	that	both	CREATE	and	REPLACE	are	included	in	most	cases.

Suppose	you	create	a	trigger	as	shown	in	Listing	13.2.

Listing	13.2	Creating	Trigger
CREATE	TRIGGER	trigger_name

…

In	a	few	days,	you	decide	to	modify	this	trigger.	If	you	do	not	include	the	reserved	word
REPLACE	in	the	CREATE	clause	of	the	trigger,	an	error	message	will	be	generated	when
you	compile	the	trigger.	The	error	message	states	that	the	name	of	your	trigger	is	already
used	by	another	object.	Once	REPLACE	is	included	in	the	CREATE	clause	of	the	trigger,
there	is	less	chance	of	an	error	occurring	because	if	it	is	a	new	trigger,	it	is	created,	and	if
it	is	an	old	trigger,	it	is	replaced.

However,	you	should	be	mindful	when	using	the	reserved	word	REPLACE	for	a	number
of	reasons.	First,	if	you	happen	to	use	REPLACE	with	the	name	of	an	existing	stored
function,	procedure,	or	package,	you	will	end	up	with	different	database	objects	that	have
the	same	name.	This	occurs	because	triggers	have	a	separate	naming	space	in	the	database.
While	sharing	of	the	same	name	by	a	trigger	and	a	procedure,	function,	or	package	does
not	cause	errors,	potentially	it	might	become	confusing;	thus	it	is	not	considered	a	good
programming	practice.	Second,	when	you	use	the	reserved	word	REPLACE	and	decide	to
associate	a	different	table	with	your	trigger,	an	error	message	is	generated.	For	example,
assume	you	created	a	trigger	STUDENT_BI	on	the	STUDENT	table.	Next,	you	decide	to
modify	this	trigger	and	associate	it	with	the	ENROLLMENT	table.	As	a	result,	the
following	error	message	is	generated:
Click	here	to	view	code	image

ORA-04095:	trigger	‘STUDENT_BI’	already	exists	on	another	table,	cannot

replace	it

The	optional	reserved	words	EDITIONABLE	and	NONEDITIONABLE	specify	whether
a	trigger	is	an	editioned	or	noneditioned	object.	Note	that	this	designation	applies	only	if
editioning	has	been	enabled	for	object	type	TRIGGER.

Did	You	Know?

Oracle	introduced	a	very	important	feature	called	edition-based	redefinition	in
version	11g,	release	2.	This	feature	enables	you	to	apply	changes	to	various
database	objects	without	invalidating	the	whole	system,	thereby	allowing	for
near-zero	downtime.	For	example,	previously	making	structural	changes	to	a
table	would	invalidate	numerous	functions,	procedures,	and	packages
dependent	on	that	table.	As	a	result,	you	would	need	to	check	and	recompile
all	invalidated	database	objects,	potentially	requiring	downtime	for	the
database.	With	edition-based	redefinition,	you	can	implement	all	these
changes	seamlessly	and	migrate	users	from	the	old	version	of	the	system	to
the	new	version	without	incurring	any	downtime.

Edition-based	redefinition	is	outside	the	scope	of	this	book.	Detailed
information	on	this	feature	can	be	found	in	Oracle’s	online	help
(www.oracle.com).

The	trigger_name	references	the	name	of	the	trigger.	BEFORE	or	AFTER	specifies
when	the	trigger	fires	(before	or	after	the	triggering	event).	The	triggering_event
references	a	DML	statement	issued	against	the	table.	The	table_name	is	the	name	of
the	table	associated	with	the	trigger.	The	clause	FOR	EACH	ROW	specifies	that	a	trigger
is	a	row-level	trigger	and	fires	once	for	each	row	either	inserted,	updated,	or	deleted.	You
will	encounter	row-	and	statement-level	triggers	in	Lab	13.2.	A	WHEN	clause	specifies	a
condition	that	must	evaluate	to	TRUE	for	the	trigger	to	fire.	For	example,	this	condition
may	specify	a	certain	restriction	on	the	column	of	a	table.

The	next	two	options,	FOLLOWS/PRECEDES	and	ENABLE/DISABLE,	were	added	to
the	CREATE	OR	REPLACE	TRIGGER	clause	in	Oracle	11g.	Prior	to	Oracle	11g,	you
needed	to	issue	the	ALTER	TRIGGER	command	to	enable	or	disable	a	trigger	once	it	had
been	created.	The	ENABLE/DISABLE	option	specifies	whether	a	trigger	is	created	in	the
enabled	or	disabled	state.	When	a	trigger	is	enabled,	it	fires	when	a	triggering	event
occurs.	Conversely,	when	a	trigger	is	disabled,	it	does	not	fire	when	a	triggering	event
occurs.	Note	that	when	a	trigger	is	first	created	without	ENABLE/DISABLE	option,	it	is
enabled	by	default.	To	disable	the	trigger,	you	need	to	issue	the	ALTER	TRIGGER
command,	as	shown	in	Listing	13.3.

Listing	13.3	Disabling	Trigger
Click	here	to	view	code	image

ALTER	TRIGGER	trigger_name	DISABLE;

Similarly,	to	enable	a	trigger	that	was	disabled	previously,	you	issue	the	ALTER
TRIGGER	command,	as	shown	in	Listing	13.4.

Listing	13.4	Enabling	Trigger
Click	here	to	view	code	image

ALTER	TRIGGER	trigger_name	ENABLE;

The	FOLLOWS/PRECEDES	option	allows	you	to	specify	the	order	in	which	triggers

http://www.oracle.com

should	fire.	It	applies	to	triggers	that	are	defined	on	the	same	table	and	fire	at	the	same
timing	point.	For	example,	if	you	defined	two	triggers	on	the	STUDENT	table	that	fire
before	the	insert	operation	is	carried	out,	Oracle	does	not	guarantee	the	order	in	which
these	triggers	will	fire	unless	you	explicitly	specify	it	with	the
FOLLOWS/PRECEDES	clause.	Note	that	the	trigger	referenced	in	the
FOLLOWS/PRECEDES	clause	must	already	exist	and	have	been	successfully	compiled.

The	portion	of	the	trigger	described	to	this	point	is	often	referred	to	as	the	trigger
header.	Next,	we	define	the	trigger	body.	The	body	of	a	trigger	has	the	same	structure	as
an	anonymous	PL/SQL	block.	Similar	to	the	case	for	a	PL/SQL	block,	the	declaration	and
exception	sections	are	optional.

Triggers	are	used	for	different	purposes,	such	as	the	following:

	Enforcing	complex	business	rules	that	cannot	be	defined	by	using	integrity
constraints

	Maintaining	complex	security	rules

	Automatically	generating	values	for	derived	columns

	Collecting	statistical	information	on	table	accesses

	Preventing	invalid	transactions

	Providing	value	auditing

The	body	of	a	trigger	is	a	PL/SQL	block.	However,	several	restrictions	apply	when	you
decide	to	create	a	trigger:

	A	trigger	may	not	issue	a	transactional	control	statement	such	as	COMMIT,
SAVEPOINT,	or	ROLLBACK.	When	the	trigger	fires,	all	operations	performed	by
the	trigger	become	part	of	a	transaction.	When	a	transaction	is	committed	or	rolled
back,	the	operations	performed	by	the	trigger	are	committed	or	rolled	back	as	well.
An	exception	to	this	rule	is	a	trigger	that	contains	an	autonomous	transaction.
Autonomous	transactions	are	discussed	in	detail	later	in	this	lab.

	Any	function	or	procedure	called	by	a	trigger	may	not	issue	a	transactional	control
statement	unless	it	contains	an	autonomous	transaction.

	It	is	not	permissible	to	declare	LONG	or	LONG	RAW	variables	in	the	body	of	a
trigger.

Did	You	Know?

If	you	drop	a	table,	the	table’s	database	triggers	are	dropped	as	well.

BEFORE	Triggers
Consider	the	following	example	of	a	trigger	on	the	STUDENT	table	mentioned	earlier	in
this	chapter.	This	trigger	fires	before	the	INSERT	statement	on	the	STUDENT	table	and
populates	the	STUDENT_ID,	CREATED_DATE,	MODIFIED_DATE,	CREATED_BY,	and
MODIFIED_BY	columns.	The	column	STUDENT_ID	is	populated	with	the	number
generated	by	the	STUDENT_ID_SEQ	sequence,	and	the	columns	CREATED_DATE,
MODIFIED_DATE,	CREATED_USER,	and	MODIFIED_USER	are	populated	with	the
current	date	and	the	current	user	name	information,	respectively.

For	Example		ch13_1a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	student_bi

BEFORE	INSERT	ON	STUDENT

FOR	EACH	ROW

BEGIN

		:NEW.student_id				:=	STUDENT_ID_SEQ.NEXTVAL;

		:NEW.created_by				:=	USER;

		:NEW.created_date		:=	SYSDATE;

		:NEW.modified_by			:=	USER;

		:NEW.modified_date	:=	SYSDATE;

END;

This	trigger	fires	for	each	row	before	the	INSERT	statement	on	the	STUDENT	table.
Notice	that	the	name	of	the	trigger	is	STUDENT_BI,	where	“STUDENT”	references	the
name	of	the	table	on	which	the	trigger	is	defined	and	the	letters	“BI”	mean	“before	insert.”
There	is	no	specific	requirement	for	naming	triggers;	however,	this	approach	to	naming	a
trigger	is	descriptive	because	the	name	of	the	trigger	contains	the	name	of	the	table
affected	by	the	triggering	event,	the	time	of	the	triggering	event	(before	or	after),	and	the
triggering	event	itself.

In	the	body	of	the	trigger,	there	is	a	pseudorecord,	:NEW,	which	allows	for	accessing	a
row	that	is	currently	being	processed.	In	other	words,	a	row	is	inserted	into	the	STUDENT
table.	The	:NEW	pseudorecord	is	of	a	type	TRIGGERING_TABLE%TYPE,	so,	in	this
case,	it	is	of	the	STUDENT%TYPE	type.	To	access	individual	members	of	the
pseudorecord	:NEW,	dot	notation	is	used.	In	other	words,	:NEW.CREATED_BY	refers	to
the	member	CREATED_BY	of	the	:NEW	pseudorecord,	and	the	name	of	the	record	is
separated	by	the	dot	from	the	name	of	its	member.

Did	You	Know?

In	addition	to	the	:NEW	pseudorecord,	an	:OLD	pseudorecord	exists.	It
allows	you	to	access	the	current	information	of	the	record	that	is	being
updated	or	deleted.	Thus	the	:OLD	pseudorecord	is	undefined	for	the
INSERT	statements	and	the	:NEW	pseudorecord	is	undefined	for	the
DELETE	statements.	However,	the	PL/SQL	compiler	does	not	generate
syntax	errors	when	:OLD	or	:NEW	pseudorecords	are	used	in	triggers	where
the	triggering	event	is	an	INSERT	or	DELETE	operation,	respectively.	In	this
case,	the	member	values	are	set	to	NULL	for	the	:OLD	and	:NEW
pseudorecords.

Take	a	closer	look	at	the	statement	that	assigns	a	sequence	value	to	the	STUDENT_ID
column.	The	ability	to	access	a	sequence	via	PL/SQL	expressions	is	a	new	feature	added
in	Oracle	11g.	Prior	to	Oracle	11g,	sequences	could	be	accessed	only	via	queries,	as	shown
in	the	next	version	of	the	example.

For	Example		Code	Fragment	Based	on	ch13_1a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	student_bi

…

DECLARE

		v_student_id	STUDENT.STUDENT_ID%TYPE;

BEGIN

		SELECT	STUDENT_ID_SEQ.NEXTVAL

				INTO	v_student_id

				FROM	dual;

…

END;

To	create	this	trigger	on	the	STUDENT	table	in	SQL	Developer,	you	may	choose	from
the	two	options.	First,	the	trigger	can	be	created	by	executing	the	script	in	the	Worksheet
window,	just	as	you	would	with	any	other	PL/SQL	block.	At	the	time	of	trigger
compilation,	you	are	prompted	to	enter	the	value	for	bind	variables	because	of	the
references	to	the	:NEW	and	:OLD	pseudorecords	in	the	body	of	the	trigger,	as	shown	in
Figure	13.1.	Note	that	check	box	next	to	NULL.	If	it	is	checked,	simply	click	the	Apply
button	and	the	trigger	will	be	created.	If	this	check	box	is	not	checked,	then	check	it	and
click	the	Apply	button.

Figure	13.1	Creating	a	Database	Trigger	in	the	Worksheet	Window

The	second	option	for	creating	a	trigger	is	to	right-click	on	Triggers	and	choose	the
New	Trigger	option,	as	shown	in	Figure	13.2.	This	activates	the	Create	Trigger	window,	as
shown	in	Figure	13.3.	In	this	window,	you	provide	schema	name,	trigger	name,	table
name,	the	timing	of	the	triggering	event,	and	the	event	on	which	the	trigger	should	fire.

Figure	13.2	Creating	a	Database	Trigger	via	New	Trigger	Option

Figure	13.3	Create	Trigger	Window

Note	that	the	schema	name	has	already	been	set	to	STUDENT,	and	a	default	name	for
the	trigger	has	been	provided,	TRIGGER1,	that	should	be	changed	to	STUDENT_BI.	In
addition,	the	Base	Type	has	been	set	to	a	TABLE	and	Base	Object	Schema	has	been	set	to
STUDENT.	This	implies	that	a	trigger	is	being	created	on	a	table	in	the	STUDENT	schema.
Next,	the	Base	Object	must	be	selected	from	the	drop-down	menu—in	this	case,	it	is
STUDENT	table.	Under	the	Events	option,	the	INSERT	option	is	moved	from	the
Available	Events	to	Selected	Events.	By	default,	the	Statement	Level	check	box	is
enabled.	Because	you	are	creating	a	row-level	trigger,	this	option	should	be	unchecked.
Finally,	there	is	an	option	to	provide	different	names	for	the	:NEW	and	:OLD
pseudorecords	and	one	or	more	conditions	for	the	WHEN	clause.	After	you	fill	in	the
Create	Trigger	window	for	the	STUDENT_BI	trigger,	it	should	contain	the	information
shown	in	Figure	13.4.

Figure	13.4	Creating	a	STUDENT_BI	Trigger	in	the	Trigger	Window

Once	all	of	the	required	information	has	been	provided	in	the	Create	Trigger	window,
the	trigger	is	created,	as	shown	in	Figure	13.5.	Notice	that	information	provided	in	the
Create	Trigger	window	was	used	to	create	the	trigger	header.	The	trigger	body	contains	a
single	statement,	NULL.

Figure	13.5	Newly	Created	STUDENT_BI	Trigger

Next,	you	need	to	provide	the	executable	statements	for	the	body	of	the	trigger	and
compile	the	trigger.	To	do	so,	you	click	the	Compile	button,	as	shown	in	Figure	13.6.

Figure	13.6	Compiling	the	STUDENT_BI	Trigger

Now	the	trigger	STUDENT_BI	has	been	created	on	the	STUDENT	table.	Please	note
that	going	forward	all	triggers	in	this	chapter	and	Chapter	14	are	created	by	using	the
Worksheet	window	rather	than	the	Create	Trigger	window.

Now	that	you	have	created	a	trigger	on	the	STUDENT	table,	consider	the	following
INSERT	statement.

For	Example		INSERT	Statement	on	the	STUDENT	Table
Click	here	to	view	code	image

INSERT	INTO	STUDENT

		(student_id,	first_name,	last_name,	zip,	registration_date,

		created_by,	created_date,	modified_by,	modified_date)

VALUES

		(STUDENT_ID_SEQ.NEXTVAL,	‘John’,	‘Smith’,	‘00914’,	SYSDATE,

			USER,	SYSDATE,	USER,	SYSDATE);

This	INSERT	statement	contains	values	for	the	columns	STUDENT_ID,
CREATED_BY,	CREATED_DATE,	MODIFIED_BY,	and	MODIFIED_DATE.	Note	that
for	every	row	you	insert	into	the	STUDENT	table,	you	must	provide	the	values	for	these
columns;	they	are	always	derived	in	the	same	fashion.	Now	that	you	have	created	the
trigger,	however,	there	is	no	need	to	provide	values	for	these	columns	in	the	INSERT
statement	because	the	trigger	automatically	populates	these	columns	in	a	consistent
manner	every	time	an	INSERT	statement	is	executed	against	the	STUDENT	table.
Therefore,	the	INSERT	statement	can	be	modified	as	follows:

For	Example		Modified	INSERT	Statement	on	the	STUDENT	Table
Click	here	to	view	code	image

INSERT	INTO	STUDENT

		(first_name,	last_name,	zip,	registration_date)

VALUES

		(‘John’,	‘Smith’,	‘00914’,	SYSDATE);

This	version	of	the	INSERT	statement	is	significantly	shorter	than	the	previous	version.
Specifically,	instead	of	providing	values	for	nine	columns,	you	need	to	provide	values	for
only	four	columns.	The	columns	STUDENT_ID,	CREATED_BY,	CREATED_DATE,
MODIFIED_BY,	and	MODIFIED_DATE	are	no	longer	present.

You	should	use	BEFORE	triggers	in	the	following	situations:

	When	a	trigger	provides	values	for	derived	columns	before	an	INSERT	or	UPDATE
statement	is	completed.	For	example,	the	trigger	can	provide	audit-oriented	columns
such	as	CREATED_DATE	and	MODIFIED_DATE.

	When	a	trigger	determines	whether	an	INSERT,	UPDATE,	or	DELETE	statement
should	be	allowed	to	complete.	For	example,	when	you	insert	a	record	into	the
INSTRUCTOR	table,	a	trigger	can	verify	whether	the	value	provided	for	the	column
ZIP	is	valid—in	other	words,	whether	there	is	a	record	in	the	ZIPCODE	table
corresponding	to	the	value	of	zip	that	you	provided.

AFTER	Triggers
Assume	there	is	a	table	called	AUDIT_TRAIL	having	the	structure	shown	in	Figure	13.7.
This	table	is	used	to	collect	user	access	information	on	different	tables	in	the	STUDENT
schema.	For	example,	you	can	record	who	deleted	records	from	the	INSTRUCTOR	table
and	when	they	were	deleted.

Figure	13.7	AUDIT_TRAIL	Table	Structure

To	accomplish	this,	you	would	need	to	create	a	trigger	on	the	INSTRUCTOR	table,	as
shown	in	the	following	example.

For	Example		ch13_2a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	instructor_aud

AFTER	UPDATE	OR	DELETE	ON	INSTRUCTOR

DECLARE

		v_trans_type	VARCHAR2(10);

BEGIN

		v_trans_type	:=	CASE

																				WHEN	UPDATING	THEN	‘UPDATE’

																				WHEN	DELETING	THEN	‘DELETE’

																		END;

		INSERT	INTO	audit_trail

				(TABLE_NAME,	TRANSACTION_NAME,	TRANSACTION_USER,	TRANSACTION_DATE)

		VALUES

				(‘INSTRUCTOR’,	v_trans_type,	USER,	SYSDATE);

END;

This	trigger	fires	after	an	UPDATE	or	DELETE	statement	is	issued	on	the
INSTRUCTOR	table.	The	body	of	the	trigger	contains	two	Boolean	functions,	UPDATING

and	DELETING.	The	function	UPDATING	evaluates	to	TRUE	if	an	UPDATE	statement	is
issued	on	the	table,	and	the	function	DELETING	evaluates	to	TRUE	if	a	DELETE
statement	is	issued	on	the	table.	Another	Boolean	function,	INSERTING,	also	evaluates
to	TRUE	when	an	INSERT	statement	is	issued	against	the	table.

This	trigger	inserts	a	record	into	the	AUDIT_TRAIL	table	when	an	UPDATE	or
DELETE	operation	is	issued	against	the	INSTRUCTOR	table.	First,	it	determines	which
operation	was	issued	against	the	INSTRUCTOR	table	via	the	CASE	statement.	The	result
of	this	evaluation	is	then	assigned	to	the	v_trans_type	variable.	Next,	the	trigger	adds
a	new	record	to	the	AUDIT_TRAIL	table.

Once	this	trigger	is	created	on	the	INSTRUCTOR	table,	any	UPDATE	or	DELETE
operation	causes	the	creation	of	new	records	in	the	AUDIT_TRAIL	table.	Furthermore,
this	trigger	may	be	enhanced	by	calculating	how	many	rows	were	updated	or	deleted	from
the	INSTRUCTOR	table.

You	should	use	AFTER	triggers	in	the	following	situations:

	When	a	trigger	should	fire	after	a	DML	statement	is	executed

	When	a	trigger	performs	actions	not	specified	in	a	BEFORE	trigger

Autonomous	Transaction
As	stated	previously,	when	a	trigger	fires,	all	operations	performed	by	the	trigger	become
part	of	a	transaction.	When	this	transaction	is	committed	or	rolled	back,	the	operations
performed	by	the	trigger	are	committed	or	rolled	back	as	well.	Consider	an	UPDATE
statement	against	the	INSTRUCTOR	table	as	shown	in	Listing	13.5.

Listing	13.5	UPDATE	on	the	INSTRUCTOR	Table
UPDATE	instructor

			SET	phone	=	‘7181234567’

	WHERE	instructor_id	=	101;

When	this	UPDATE	statement	is	executed,	the	INSTRUCTOR_AUD	trigger	fires	and
adds	a	single	record	to	the	AUDIT_TRAIL	table	as	shown	in	Listing	13.6.

Listing	13.6	SELECT	from	the	AUDIT_TRAIL	Table
Click	here	to	view	code	image

SELECT	*

		FROM	audit_trail;

TABLE_NAME		TRANSACTION_NAME		TRANSACTION_USER		TRANSACTION_DATE

–––-		–––––-		–––––-		–––––-

INSTRUCTOR		UPDATE												STUDENT											05/07/2014

Next,	consider	rolling	back	the	UPDATE	statement	just	issued.	In	this	case,	the	record
inserted	in	the	AUDIT_TRAIL	table	is	rolled	back	as	well,	as	shown	in	the	Listing	13.7.

Listing	13.7	Rolling	Back	UPDATE	on	the	INSTRUCTOR	Table
Click	here	to	view	code	image

ROLLBACK;

SELECT	*

		FROM	audit_trail;

TABLE_NAME		TRANSACTION_NAME		TRANSACTION_USER		TRANSACTION_DATE

–––-		–––––-		–––––-		–––––-

As	you	can	see,	the	AUDIT_TRAIL	table	no	longer	contains	any	records.	To
circumvent	such	behavior,	you	may	choose	to	employ	autonomous	transactions.

An	autonomous	transaction	is	an	independent	transaction	started	by	another	transaction
that	is	usually	referred	to	as	the	main	transaction.	In	other	words,	an	autonomous
transaction	may	issue	various	DML	statements	and	commit	or	roll	them	back,	without
committing	or	rolling	back	the	DML	statements	issued	by	the	main	transaction.

To	define	an	autonomous	transaction,	you	employ	the	AUTONOMOUS_TRANSACTION
pragma.	You	have	already	encountered	one	pragma,	EXCEPTION_INIT,	in	Chapter	10.
Recall	that	a	pragma	is	a	special	instruction	to	the	PL/SQL	compiler	that	is	processed	at
the	time	of	the	compilation.	The	AUTONOMOUS_TRANSACTION	pragma	appears	in	the
declaration	section	of	a	block,	as	shown	in	Listing	13.8.

Listing	13.8	AUTONOMOUS_TRANSACTION	Pragma
Click	here	to	view	code	image

DECLARE

		PRAGMA	AUTONOMOUS_TRANSACTION;

Now	consider	a	modified	version	of	the	INSTRUCTOR_AUD	trigger	that	includes	an
the	autonomous	transaction.	Newly	added	statements	are	shown	in	bold.

For	Example		ch13_2b.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	instructor_aud

AFTER	UPDATE	OR	DELETE	ON	INSTRUCTOR

DECLARE

		v_trans_type	VARCHAR2(10);

		PRAGMA	AUTONOMOUS_TRANSACTION;

BEGIN

		v_trans_type	:=	CASE

																				WHEN	UPDATING	THEN	‘UPDATE’

																				WHEN	DELETING	THEN	‘DELETE’

																		END;

		INSERT	INTO	audit_trail

				(TABLE_NAME,	TRANSACTION_NAME,	TRANSACTION_USER,	TRANSACTION_DATE)

		VALUES

				(‘INSTRUCTOR’,	v_trans_type,	USER,	SYSDATE);

		COMMIT;

END;

In	this	version	of	the	trigger,	you	added	the	AUTONOMOUS_TRANSACTION	pragma	to
the	declaration	portion	and	the	COMMIT	statement	to	the	executable	portion	of	the	trigger.

Now	try	issuing	the	UPDATE	statement	as	in	Listing	13.5	and	then	rolling	it	back	and
querying	the	AUDIT_TRAIL	table.	Even	though	the	changes	on	the	INSTRUCTOR	table
were	rolled	back,	the	AUDIT_TRAIL	table	will	continue	to	contain	a	record	of	the

attempted	UPDATE	operation.

Lab	13.2:	Types	of	Triggers

After	this	lab,	you	will	be	able	to

	Use	Row	and	Statement	Triggers

	Use	INSTEAD	OF	Triggers

Row	and	Statement	Triggers
In	Lab	13.1,	you	encountered	the	term	row	trigger.	A	row	trigger	is	fired	as	many	times	as
there	are	rows	affected	by	the	triggering	statement.	When	the	statement	FOR	EACH	ROW
is	present	in	the	CREATE	TRIGGER	clause,	the	trigger	is	a	row	trigger.	Consider	the	code
fragment	shown	in	Listing	13.9.

Listing	13.9	Code	Fragment	of	the	COURSE_AU	Trigger
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	course_au

AFTER	UPDATE	ON	COURSE

FOR	EACH	ROW

…

In	this	code	fragment,	the	statement	FOR	EACH	ROW	is	present	in	the	CREATE
TRIGGER	clause.	Therefore,	this	trigger	is	a	row	trigger.	Thus,	if	an	UPDATE	statement
causes	20	records	in	the	COURSE	table	to	be	modified,	this	trigger	will	fire	20	times.

A	statement	trigger	is	fired	once	for	the	triggering	statement.	In	other	words,	a
statement	trigger	fires	once,	regardless	of	the	number	of	rows	affected	by	the	triggering
statement.	To	create	a	statement	trigger,	you	omit	the	FOR	EACH	ROW	statement	in	the
CREATE	TRIGGER	clause,	as	shown	in	Listing	13.10.

Listing	13.10	Code	Fragment	of	the	ENROLLMENT_AD	Trigger
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	enrollment_ad

AFTER	DELETE	ON	ENROLLMENT

…

This	particular	trigger	fires	once	after	a	DELETE	statement	is	issued	against	the
ENROLLMENT	table.	Whether	the	DELETE	statement	removes	one	row,	five	rows,	or	500
rows	from	the	ENROLLMENT	table,	this	trigger	fires	only	once.

Statement	triggers	should	be	used	when	the	operations	performed	by	the	trigger	do	not
depend	on	the	data	in	the	individual	records.	For	example,	if	you	want	to	limit	access	to	a
table	to	business	hours	only,	you	might	use	a	statement	trigger.	Consider	the	following
example.

For	Example		ch13_3a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	instructor_biud

BEFORE	INSERT	OR	UPDATE	OR	DELETE	ON	INSTRUCTOR

DECLARE

		v_day	VARCHAR2(10);

BEGIN

		v_day	:=	RTRIM(TO_CHAR(SYSDATE,	‘DAY’));

		IF	v_day	LIKE	(‘S%’)

		THEN

				RAISE_APPLICATION_ERROR	(-20000,	‘A	table	cannot	be	modified	during

off	hours’);

		END	IF;

END;

This	statement	trigger	on	the	INSTRUCTOR	table	fires	before	an	INSERT,	UPDATE,	or
DELETE	statement	is	issued.	First,	the	trigger	determines	the	day	of	the	week.	If	the	day
happens	to	be	Saturday	or	Sunday,	an	error	message	is	generated.	For	example,	if	the
following	UPDATE	statement	on	the	INSTRUCTOR	table	is	issued	on	Saturday	or	Sunday

UPDATE	instructor

			SET	zip	=	10025

	WHERE	zip	=	10015;

the	trigger	generates	this	error	message:
Click	here	to	view	code	image

update	INSTRUCTOR

*

ERROR	at	line	1:

ORA-20000:	A	table	cannot	be	modified	during	off	hours

ORA-06512:	at	“STUDENT.INSTRUCTOR_BIUD”,	line	8

ORA-04088:	error	during	execution	of	trigger	‘STUDENT.INSTRUCTOR_BIUD’

Notice	that	this	trigger	checks	for	a	specific	day	of	the	week,	but	it	does	not	check	the
time	of	day.	You	can	create	a	more	sophisticated	trigger	that	checks	which	day	of	the	week
it	is	and	whether	the	current	time	is	between	9:00	A.M.	and	5:00	P.M.	If	the	day	falls	in	the
business	week	and	the	time	of	the	day	is	not	between	9:00	A.M.	and	5:00	P.M.,	the	error	is
generated.

INSTEAD	OF	Triggers
So	far,	you	have	seen	triggers	that	are	defined	on	database	tables.	PL/SQL	provides
another	kind	of	trigger	that	is	defined	on	database	views.	A	view	is	a	custom
representation	of	data	that	can	be	referred	to	as	a	“stored	query.”	Consider	the	following
example	of	a	view	created	against	the	COURSE	table:

For	Example		ch13_4a.sql
Click	here	to	view	code	image

CREATE	VIEW	course_cost

AS

		SELECT	course_no,	description,	cost

				FROM	course;

Watch	Out!

You	may	find	that	you	do	not	have	privileges	to	create	a	view	when	logged	in
as	STUDENT.	In	such	a	case,	you	need	to	log	in	as	SYS	and	grant	a	CREATE
VIEW	privilege	as	follows:

GRANT	CREATE	VIEW	TO	student;

Did	You	Know?

Once	a	view	is	created,	it	does	not	contain	or	store	any	data.	The	data	is
derived	from	the	SELECT	statement	associated	with	the	view.	In	the
preceding	example,	the	COURSE_COST	view	contains	three	columns	that	are
selected	from	the	COURSE	table.

Similar	to	tables,	views	can	be	manipulated	via	INSERT,	UPDATE,	and	DELETE
statements,	with	some	restrictions.	Be	aware	that	when	any	of	these	statements	are	issued
against	a	view,	the	corresponding	data	is	modified	in	the	underlying	table.	For	example,
consider	an	UPDATE	statement	against	the	COURSE_COST	view.

For	Example		ch13_5a.sql
UPDATE	course_cost

			SET	cost	=	2000

	WHERE	course_no	=	450;

Once	this	UPDATE	statement	is	executed,	both	SELECT	statements	against	the
COURSE_COST	view	and	SELECT	statements	against	the	COURSE	table	return	the	same
value	of	the	cost	for	course	number	450,	as	shown	in	Listing	13.11.

Listing	13.11	Selecting	Data	from	the	COURSE_COST	View	and	the	COURSE	Table
Click	here	to	view	code	image

SELECT	*

		FROM	course_cost

	WHERE	course_no	=	450;

COURSE_NO			DESCRIPTION															COST

–––-		––––––––		–––-

450									DB	Programming	in	Java				2000

SELECT	course_no,	cost

		FROM	course

	WHERE	course_no	=	450;

COURSE_NO			COST

–––-		–––-

450									2000

As	mentioned	earlier,	some	restrictions	are	placed	on	the	views	in	terms	of	whether	they
can	be	modified	by	INSERT,	UPDATE,	and	DELETE	statements.	Specifically,	these
restrictions	apply	to	the	underlying	SELECT	statement,	which	is	also	referred	to	as	a
“view	query.”	Thus,	if	a	view	query	performs	any	of	the	operations	or	contains	any	of	the
following	constructs,	a	view	cannot	be	modified	by	an	UPDATE,	INSERT,	and	DELETE

statements:

	Set	operations	such	as	UNION,	UNION	ALL,	INTERSECT,	and	MINUS

	Group	functions	such	as	AVG,	COUNT,	MAX,	MIN,	and	SUM

	GROUP	BY	or	HAVING	clauses

	CONNECT	BY	or	START	WITH	clauses

	The	DISTINCT	operator

	The	ROWNUM	pseudocolumn

For	example,	consider	a	view	created	against	the	INSTRUCTOR	and	SECTION	tables
that	summarizes	how	many	courses	are	taught	by	an	instructor.

For	Example		ch13_6a.sql
Click	here	to	view	code	image

CREATE	VIEW	instructor_summary_view

AS

		SELECT	i.instructor_id,	COUNT(s.section_id)	total_courses

				FROM	instructor	i

					LEFT	OUTER	JOIN	section	s

							ON	(i.instructor_id	=	s.instructor_id)

		GROUP	BY	i.instructor_id;

Note	that	the	SELECT	statement	is	written	in	the	ANSI	1999	SQL	standard.	It	uses	the
outer	join	between	the	INSTRUCTOR	and	SECTION	tables.	The	LEFT	OUTER	JOIN
indicates	that	an	instructor	record	in	the	INSTRUCTOR	table	that	does	not	have	a
corresponding	record	in	the	SECTION	table	is	included	in	the	result	set,	with
TOTAL_COURSES	being	equal	to	zero	in	this	result.

Did	You	Know?

Detailed	explanations	and	examples	of	statements	using	the	new	ANSI	1999
SQL	standard	may	be	found	in	Oracle’s	online	help.	Throughout	this	book	we
try	to	provide	you	with	examples	illustrating	both	standards;	however,	our
main	focus	is	on	PL/SQL	features	rather	than	SQL.

This	view	is	not	updatable	because	it	contains	the	group	function,	COUNT().	As	a
result,	the	DELETE	statement
Click	here	to	view	code	image

DELETE	FROM	instructor_summary_view

	WHERE	instructor_id	=	109;

causes	the	following	error:
Click	here	to	view	code	image

ORA-01732:	data	manipulation	operation	not	legal	on	this	view

01732.	00000	-		“data	manipulation	operation	not	legal	on	this	view”

Recall	that	PL/SQL	provides	a	special	kind	of	trigger	that	can	be	defined	on	database
views.	This	INSTEAD	OF	trigger	is	created	as	a	row	trigger.	An	INSTEAD	OF	trigger

fires	instead	of	the	triggering	statement	(INSERT,	UPDATE,	DELETE)	that	has	been
issued	against	a	view	and	directly	modifies	the	underlying	tables.
Consider	an	INSTEAD	OF	trigger	defined	on	the	INSTRUCTOR_SUMMARY_VIEW.

This	trigger	deletes	a	record	from	the	INSTRUCTOR	table	for	the	corresponding	value	of
the	instructor’s	ID.

For	Example		ch13_7a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	instructor_summary_del

INSTEAD	OF	DELETE	ON	instructor_summary_view

FOR	EACH	ROW

BEGIN

		DELETE	FROM	instructor

			WHERE	instructor_id	=	:OLD.INSTRUCTOR_ID;

END;

Note	the	usage	of	the	INSTEAD	OF	clause	in	the	trigger	header.	Once	the	trigger	is
created,	the	DELETE	statement	against	the	INSTRUCTOR_SUMMARY_VIEW	does	not
generate	any	errors.
Click	here	to	view	code	image

DELETE	FROM	instructor_summary_view

	WHERE	instructor_id	=	109;

1	row	deleted.

When	this	DELETE	statement	is	issued,	the	trigger	deletes	a	record	from	the
INSTRUCTOR	table	corresponding	to	the	specified	value	of	INSTRUCTOR_ID.

Now	consider	the	same	DELETE	statement	with	a	different	instructor	ID:
Click	here	to	view	code	image

DELETE	FROM	instructor_summary_view

	WHERE	instructor_id	=	101;

When	this	DELETE	statement	is	issued,	it	causes	the	following	error:
Click	here	to	view	code	image

ORA-02292:	integrity	constraint	(STUDENT.SECT_INST_FK)	violated	-	child

record	found

ORA-06512:	at	“STUDENT.INSTRUCTOR_SUMMARY_DEL”,	line	2

ORA-04088:	error	during	execution	of	trigger

‘STUDENT.INSTRUCTOR_SUMMARY_DEL’

The	INSTRUCTOR_SUMMARY_VIEW	joins	the	INSTRUCTOR	and	SECTION	tables
based	on	the	INSTRUCTOR_ID	column	that	is	present	in	both	tables.	The
INSTRUCTOR_ID	column	in	the	INSTRUCTOR	table	has	a	primary	key	constraint
defined	on	it.	The	INSTRUCTOR_ID	column	in	the	SECTION	table	has	a	foreign	key
constraint	that	references	the	INSTRUCTOR_ID	column	of	the	INSTRUCTOR	table.
Thus,	the	SECTION	table	is	considered	a	child	table	of	the	INSTRUCTOR	table.

The	original	DELETE	statement	does	not	cause	any	errors	because	there	is	no	record	in
the	SECTION	table	corresponding	to	the	instructor	ID	of	109.	In	other	words,	the
instructor	with	an	ID	of	109	does	not	teach	any	courses.

The	second	DELETE	statement	causes	an	error	because	the	INSTEAD	OF	trigger	tries
to	delete	a	record	from	the	INSTRUCTOR	table,	the	parent	table.	However,	there	is	a
corresponding	record	in	the	SECTION	table,	the	child	table,	with	an	instructor	ID	of	101.
This	causes	an	integrity	constraint	violation	error.	It	might	seem	that	one	more	DELETE
statement	(highlighted	in	bold	in	the	following	example)	should	be	added	to	the
INSTEAD	OF	trigger.

For	Example		ch13_7b.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	instructor_summary_del

INSTEAD	OF	DELETE	ON	instructor_summary_view

FOR	EACH	ROW

BEGIN

		DELETE	FROM	section

			WHERE	instructor_id	=	:OLD.INSTRUCTOR_ID;

		DELETE	FROM	instructor

			WHERE	instructor_id	=	:OLD.INSTRUCTOR_ID;

END;

Notice	that	the	newly	added	DELETE	statement	removes	records	from	the	SECTION
table	before	the	INSTRUCTOR	table	because	the	SECTION	table	contains	child	records	of
the	INSTRUCTOR	table.	However,	the	DELETE	statement	against	the
INSTRUCTOR_SUMMARY_VIEW	causes	yet	another	error:
Click	here	to	view	code	image

DELETE	FROM	instructor_summary_view

	WHERE	instructor_id	=	101;

ORA-02292:	integrity	constraint	(STUDENT.GRTW_SECT_FK)	violated	-	child

record	found

ORA-06512:	at	“STUDENT.INSTRUCTOR_SUMMARY_DEL”,	line	2

ORA-04088:	error	during	execution	of	trigger

‘STUDENT.INSTRUCTOR_SUMMARY_DEL’

This	time,	the	error	refers	to	a	different	foreign	key	constraint	that	specifies	the
relationship	between	the	SECTION	and	GRADE_TYPE_WEIGHT	tables.	In	this	case,	the
child	records	are	found	in	the	GRADE_TYPE_WEIGHT	table.	Thus,	before	deleting
records	from	the	SECTION	table,	the	trigger	must	delete	all	corresponding	records	from
the	GRADE_TYPE_WEIGHT	table.	However,	the	GRADE_TYPE_WEIGHT	table	has	child
records	in	the	GRADE	table,	so	the	trigger	must	delete	records	from	the	GRADE	table	first.

This	example	illustrates	the	complexity	of	designing	an	INSTEAD	OF	trigger.	To
ensure	that	such	a	trigger	works	as	intended,	you	must	be	aware	of	two	important	factors:
the	relationships	among	tables	in	the	database	and	the	ripple	effect	that	a	particular	design
may	introduce.	This	example	suggests	deleting	records	from	four	underlying	tables.
However,	those	tables	contain	information	that	relates	not	only	to	the	instructors	and	the
sections	they	teach,	but	also	to	the	students	and	the	sections	in	which	they	are	enrolled.

Summary
In	this	chapter,	you	began	learning	about	database	triggers,	including	what	they	are,	how
they	fire,	which	types	of	triggers	are	available,	and	how	they	may	be	used.	You	also
learned	how	to	define	and	employ	autonomous	transactions.	In	Chapter	14,	you	will	learn
about	compound	triggers	and	their	usage.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

14.	Mutating	Tables	and	Compound	Triggers

In	this	Chapter,	you	will	learn	about

	Mutating	Tables

	Compound	Triggers

In	Chapter	13,	you	explored	the	concept	of	triggers.	You	learned	about	usage	of	triggers	in
the	database,	events	that	cause	triggers	to	fire,	and	different	types	of	triggers.	In	this
chapter,	you	will	continue	exploring	triggers.	You	will	learn	about	mutating	table	issues
and	discover	how	triggers	can	be	used	to	resolve	these	issues.

Lab	14.1	describes	mutating	tables	and	explains	how	to	resolve	issues	associated	with
them	in	Oracle	database	prior	to	the	version	11g.	Lab	14.2	covers	compound	triggers,
which	were	introduced	in	Oracle	11g,	and	discusses	how	they	can	be	used	to	resolve
mutating	table	issues.

Lab	14.1:	Mutating	Tables

After	this	lab,	you	will	be	able	to

	Understand	Mutating	Tables

	Resolve	Mutating	Tables	Issues

What	Is	a	Mutating	Table?
A	table	against	which	a	DML	statement	is	issued	is	called	a	mutating	table.	For	a	trigger,
the	mutating	table	is	the	one	on	which	the	trigger	is	defined.	If	a	trigger	tries	to	read	or
modify	such	a	table,	it	causes	a	mutating	table	error.	As	a	result,	a	SQL	statement	issued	in
the	body	of	the	trigger	may	not	read	or	modify	a	mutating	table.	Note	that	this	restriction
applies	to	row-level	triggers.

Watch	Out!

A	mutating	table	error	is	a	runtime	error.	In	other	words,	this	error	occurs	not
at	the	time	of	trigger	creation	(compilation),	but	rather	when	the	trigger	fires.

Consider	the	following	example	of	a	trigger	causing	a	mutating	table	error.

For	Example		ch14_1a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	section_biu

BEFORE	INSERT	OR	UPDATE	ON	section

FOR	EACH	ROW

DECLARE

		v_total	NUMBER;

		v_name		VARCHAR2(30);

BEGIN

		SELECT	COUNT(*)

				INTO	v_total

				FROM	section		—	SECTION	is	MUTATING

			WHERE	instructor_id	=	:NEW.instructor_id;

		—	check	if	the	current	instructor	is	overbooked

		IF	v_total	>=	10

		THEN

				SELECT	first_name||’	‘||last_name

						INTO	v_name

						FROM	instructor

					WHERE	instructor_id	=	:NEW.instructor_id;

				RAISE_APPLICATION_ERROR	(-20000,	‘Instructor,	‘||v_name||’,	is

overbooked’);

		END	IF;

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				RAISE_APPLICATION_ERROR	(-20001,	‘This	is	not	a	valid	instructor’);

END;

This	trigger	fires	before	an	INSERT	or	UPDATE	statement	is	issued	on	the	SECTION
table.	The	trigger	checks	whether	the	specified	instructor	is	teaching	too	many	sections.	If
the	number	of	sections	taught	by	an	instructor	is	equal	to	or	greater	than	10,	the	trigger
issues	an	error	message	stating	that	this	instructor	is	teaching	too	many	sections.

Now,	consider	the	following	UPDATE	statement	issued	against	the	SECTION	table:
UPDATE	section

			SET	instructor_id	=	101

	WHERE	section_id	=	80;

When	this	UPDATE	statement	is	issued	against	the	SECTION	table,	the	following	error
message	is	displayed:
Click	here	to	view	code	image

ORA-04091:	table	STUDENT.SECTION	is	mutating,	trigger/function	may	not	see

it

ORA-06512:	at	“STUDENT.SECTION_BIU”,	line	5

ORA-04088:	error	during	execution	of	trigger	‘STUDENT.SECTION_BIU’

Notice	that	the	error	message	states	that	the	SECTION	table	is	mutating	and	the	trigger
may	not	see	it.	This	error	message	is	generated	because	there	is	a	SELECT	INTO
statement,
Click	here	to	view	code	image

SELECT	COUNT(*)

		INTO	v_total

		FROM	section

	WHERE	instructor_id	=	:NEW.INSTRUCTOR_ID;

issued	against	the	SECTION	table	that	is	being	modified	and,	therefore,	is	mutating.

Resolving	Mutating	Table	Issues
To	correct	mutating	table	error	described	earlier,	the	following	steps	must	be	taken	when
using	an	Oracle	version	prior	to	11g:

1.	To	record	the	instructor’s	ID	and	name	as	described	in	the	preceding	example,	two
global	variables	must	be	declared	with	the	help	of	a	PL/SQL	package.	You	will	learn
about	global	variables	and	packages	in	Chapter	21.

2.	An	existing	trigger	must	be	modified	so	that	it	records	the	instructor’s	ID,	queries
the	INSTRUCTOR	table,	and	records	the	instructor’s	name.

3.	A	new	trigger	must	be	created	on	the	SECTION	table.	This	trigger	should	be	a
statement-level	trigger	that	fires	after	the	INSERT	or	UPDATE	statement	has	been
issued.	It	will	check	the	number	of	courses	that	are	taught	by	a	particular	instructor
and	will	raise	an	error	if	that	number	is	equal	to	or	greater	than	10.

Did	You	Know?

These	steps	are	used	to	resolve	mutating	table	errors	in	versions	of	Oracle
prior	to	11g.	Starting	with	Oracle	11g,	compound	triggers	are	used	to	resolve
this	error.	Compound	triggers	are	covered	in	Lab	14.2.

Consider	the	package	specification	shown	in	Listing	14.1.

Listing	14.1	INSTRUCTOR_ADM	Package	Specification
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	instructor_adm

AS

		g_instructor_id			instructor.instructor_id%TYPE;

		g_instructor_name	varchar2(50);

END;

This	package	specification	contains	declarations	for	two	global	variables,
g_instructor_id	and	g_instructor_name.	Note	that	the	CREATE	OR
REPLACE	clause	is	similar	to	the	clause	used	for	a	trigger.	(Packages	are	covered	in	detail
in	Chapter	21.)

Next,	the	existing	trigger	SECTION_BIU	is	modified	as	follows:

For	Example		ch14_1b.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	section_biu

BEFORE	INSERT	OR	UPDATE	ON	section

FOR	EACH	ROW

BEGIN

		IF	:NEW.instructor_id	IS	NOT	NULL

		THEN

				BEGIN

						—	Assign	new	instructor	ID	to	the	global	variable

						instructor_adm.g_instructor_id	:=	:NEW.INSTRUCTOR_ID;

						SELECT	first_name||’	‘||last_name

								INTO	instructor_adm.g_instructor_name

								FROM	instructor

							WHERE	instructor_id	=	instructor_adm.g_instructor_id;

				EXCEPTION

						WHEN	NO_DATA_FOUND

						THEN

								RAISE_APPLICATION_ERROR	(-20001,	‘This	is	not	a	valid

instructor’);

				END;

		END	IF;

END;

In	this	version	of	the	trigger,	the	global	variables	g_instructor_id	and
g_instructor_name	are	initialized	if	the	incoming	value	of	the	instructor’s	ID	is	not
null.	Notice	that	the	variable	names	are	prefixed	by	the	package	name—a	convention
called	dot	notation.

Finally,	a	new	statement-level	trigger	is	created	on	the	SECTION	table:

For	Example		ch14_2a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	section_aiu

AFTER	INSERT	OR	UPDATE	ON	section

DECLARE

		v_total	INTEGER;

BEGIN

		SELECT	COUNT(*)

				INTO	v_total

				FROM	section

			WHERE	instructor_id	=	instructor_adm.g_instructor_id;

		—	check	if	the	current	instructor	is	overbooked

		IF	v_total	>=	10

		THEN

				RAISE_APPLICATION_ERROR

						(-20000,	‘Instructor,	‘||instructor_adm.g_instructor_name||’,	is

overbooked’);

		END	IF;

END;

This	trigger	fires	after	an	INSERT	or	UPDATE	statement	is	issued	against	the
SECTION	table.	Because	this	is	a	statement-level	trigger,	the	FOR	EACH	ROW	clause	is
omitted	from	the	trigger	header.	This	trigger	checks	the	number	of	courses	that	are	taught
by	a	particular	instructor	and	raises	an	error	if	that	number	is	equal	to	or	greater	than	10.
This	is	accomplished	with	the	help	of	two	global	variables,	g_instructor_id	and
g_instructor_name.	As	mentioned	earlier,	these	variables	are	populated	by	the
SECTION_BIU	trigger	that	fires	before	an	INSERT	or	UPDATE	statement	is	issued
against	the	SECTION	table.

As	a	result,	the	UPDATE	statement	used	earlier
UPDATE	section

			SET	instructor_id	=	101

	WHERE	section_id	=	80;

produces	ORA-20000	error	as	expected

Click	here	to	view	code	image

ORA-20000:	Instructor,	Fernand	Hanks,	is	overbooked

ORA-06512:	at	“STUDENT.SECTION_AIU”,	line	12

ORA-04088:	error	during	execution	of	trigger	‘STUDENT.SECTION_AIU’

This	error	is	generated	by	the	trigger	SECTION_AIU	and	does	not	contain	any	message
about	a	mutating	table.

Now	consider	a	similar	UPDATE	statement	for	a	different	instructor	ID	that	does	not
cause	any	errors:

UPDATE	section

			SET	instructor_id	=	110

	WHERE	section_id	=	80;

1	row	updated.

Lab	14.2:	Compound	Triggers

After	this	lab,	you	will	be	able	to

	Define	a	Compound	Trigger

	Use	Compound	Triggers	to	Resolve	Mutating	Table	Issues

What	Is	a	Compound	Trigger?
A	compound	trigger	allows	you	to	combine	different	types	of	triggers	into	one	trigger.
Specifically,	you	are	able	to	combine

	A	statement	trigger	that	fires	before	the	firing	statement

	A	row	trigger	that	fires	before	each	row	that	the	firing	statement	affects

	A	row	trigger	that	fires	after	each	row	that	the	firing	statement	affects

	A	statement	trigger	that	fires	after	the	firing	statement

For	example,	you	can	create	a	compound	trigger	on	the	STUDENT	table	with	portions
of	code	that	would	fire	once	before	the	insert,	before	the	insert	for	each	affected	row,	after
the	insert	for	each	affected	row,	and	once	after	the	insert.

The	structure	of	a	compound	trigger	is	shown	in	Listing	14.2.

Listing	14.2	General	Syntax	for	Creating	a	Compound	Trigger
Click	here	to	view	code	image

CREATE	[OR	REPLACE]	TRIGGER	trigger_name

triggering_event	ON	table_name

COMPOUND	TRIGGER

		Declaration	Statements

BEFORE	STATEMENT	IS

BEGIN

		Executable	statements

END	BEFORE	STATEMENT;

BEFORE	EACH	ROW	IS

BEGIN

		Executable	statements

END	BEFORE	EACH	ROW;

AFTER	EACH	ROW	IS

BEGIN

		Executable	statements

END	AFTER	EACH	ROW;

AFTER	STATEMENT	IS

BEGIN

		Executable	statements

END	AFTER	STATEMENT;

END;

First	you	specify	the	trigger	header	that	includes	the	CREATE	OR	REPLACE	clause,
the	triggering	event,	the	table	name	for	which	the	trigger	is	defined,	and	the	COMPOUND
TRIGGER	clause	that	denotes	that	this	is	a	compound	trigger.	Note	the	omission	of	the
BEFORE	or	AFTER	clause	in	the	header	of	the	compound	trigger.

Next,	you	specify	a	declaration	section	that	is	common	to	all	executable	sections.	In
other	words,	any	variable	declared	in	this	section	can	be	referenced	in	any	of	the
executable	sections.

Finally,	you	specify	the	executable	sections	that	fire	at	different	timing	points.	Each	of
these	sections	is	optional.	Thus,	if	no	action	takes	place	after	the	firing	statement,	there	is
no	AFTER	STATEMENT	section.

Watch	Out!

Compound	triggers	have	several	restrictions:

	A	compound	trigger	may	be	defined	on	a	table	or	a	view	only.

	A	triggering	event	of	a	compound	trigger	is	limited	to	the	DML	statements.

	A	compound	trigger	may	not	contain	an	autonomous	transaction.	In	other
words,	its	declaration	portion	cannot	include
PRAGMA	AUTOTONOMOUS_TRANSACTION.

	An	exception	that	occurs	in	one	executable	section	must	be	handled	within
that	section.	For	example,	if	an	exception	occurs	in	the	AFTER	EACH	ROW
section,	it	cannot	propagate	to	the	AFTER	STATEMENT	section;	rather,	it
must	be	handled	in	the	AFTER	EACH	ROW	section.

	References	to	:OLD	and	:NEW	pseudocolumns	cannot	appear	in	the
declaration,	BEFORE	STATEMENT,	and	AFTER	STATEMENT	sections.

	The	value	of	the	:NEW	pseudocolumn	can	be	changed	in	the	BEFORE	EACH
ROW	section	only.

	The	firing	order	of	the	compound	and	simple	triggers	is	not	guaranteed.	In
other	words,	the	firing	of	the	compound	trigger	may	interleave	with	the	firing
of	the	simple	triggers.

	If	a	DML	statement	issued	on	a	table	that	has	a	compound	trigger	defined	on	it
fails	(rolls	back)	due	to	an	exception:

	Variables	declared	in	the	compound	trigger	sections	are	reinitialized.	In
other	words,	any	values	assigned	those	variable	are	lost.

	DML	statements	issued	by	the	compound	trigger	are	not	rolled	back.

Consider	the	following	example	of	the	compound	trigger	on	the	STUDENT	table	that
has	BEFORE	STATEMENT	and	BEFORE	EACH	ROW	sections	only.

For	Example		ch14_3a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	student_compound

FOR	INSERT	ON	STUDENT

COMPOUND	TRIGGER

		—	Declaration	section

		v_day		VARCHAR2(10);

BEFORE	STATEMENT	IS

BEGIN

		v_day	:=	RTRIM(TO_CHAR(SYSDATE,	‘DAY’));

		IF	v_day	LIKE	(‘S%’)

		THEN

				RAISE_APPLICATION_ERROR

						(-20000,	‘A	table	cannot	be	modified	during	off	hours’);

		END	IF;

END	BEFORE	STATEMENT;

BEFORE	EACH	ROW	IS

BEGIN

		:NEW.student_id				:=	STUDENT_ID_SEQ.NEXTVAL;

		:NEW.created_by				:=	USER;

		:NEW.created_date		:=	SYSDATE;

		:NEW.modified_by			:=	USER;

		:NEW.modified_date	:=	SYSDATE;

END	BEFORE	EACH	ROW;

END;

This	trigger	has	a	declaration	section	and	two	executable	sections	only.	Each	of	the
executable	sections	is	optional	and	is	specified	only	because	there	is	an	action	associated
with	it.

First,	the	declaration	section	contains	the	declaration	of	a	single	variable	used	in	the
BEFORE	STATEMENT	section.	Second,	the	BEFORE	STATEMENT	section	initializes
the	variable	and	contains	an	IF	statement	that	prevents	modification	of	the	STUDENT
table	during	off	hours.	This	section	fires	once	before	an	INSERT	statement.	Next,	the
BEFORE	EACH	ROW	section	initializes	some	of	the	columns	of	the	STUDENT	table	to
their	default	values.

Note	that	all	references	to	the	:NEW	pseudorecord	are	placed	in	the	BEFORE	EACH
ROW	section	of	the	trigger,	as	this	section	is	available	in	the	row-level	section	only.	In	fact,
if	you	attempt	to	assign	values	to	any	of	the	members	of	the	:NEW	pseudorecord	in	the
BEFORE	STATEMENT	section,	the	trigger	compiles	with	the	error	message	similar	to	one
shown	here:
Click	here	to	view	code	image

PLS-00363:	expression	‘NEW.CREATED_BY’	cannot	be	used	as	an	assignment

target

PLS-00679:	trigger	binds	not	allowed	in	before/after	statement	section

PL/SQL:	Statement	ignored

Resolving	Mutating	Table	Issues	with	Compound	Triggers
In	Lab	14.1,	you	learned	about	mutating	table	issues	and	saw	how	they	can	be	resolved	in
Oracle	versions	prior	to	11g.	In	this	lab,	you	will	learn	how	to	resolve	mutating	table
issues	by	means	of	compound	triggers,	which	were	introduced	in	Oracle	11g.	Recall	the
example	of	the	trigger	on	the	SECTION	table	from	Lab	14.1	that	caused	a	mutating	table
error	and	the	steps	you	took	to	resolve	this	error,	as	shown	in	Listing	14.3.

Listing	14.3	Preventing	Mutating	Table	Issue	Prior	to	Oracle	11g
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	section_biu

BEFORE	INSERT	OR	UPDATE	ON	section

FOR	EACH	ROW

DECLARE

		v_total	NUMBER;

		v_name		VARCHAR2(30);

BEGIN

		SELECT	COUNT(*)

				INTO	v_total

				FROM	section		—	SECTION	is	MUTATING

			WHERE	instructor_id	=	:NEW.instructor_id;

		—	check	if	the	current	instructor	is	overbooked

		IF	v_total	>=	10

		THEN

				SELECT	first_name||’	‘||last_name

						INTO	v_name

						FROM	instructor

					WHERE	instructor_id	=	:NEW.instructor_id;

				RAISE_APPLICATION_ERROR	(-20000,	‘Instructor,	‘||v_name||’,	is

overbooked’);

		END	IF;

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				RAISE_APPLICATION_ERROR

							(-20001,	‘This	is	not	a	valid	instructor’);

END;

To	correct	this	problem,	you	took	the	following	steps:

	You	created	a	package	where	you	declared	two	global	variables.
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	instructor_adm

		AS	g_instructor_id		instructor.instructor_id%TYPE;

		g_instructor_name	varchar2(50);

END;

	You	modified	the	existing	trigger	to	record	the	instructor’s	ID	and	name.
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	section_biu

BEFORE	INSERT	OR	UPDATE	ON	section

FOR	EACH	ROW

BEGIN

		IF	:NEW.instructor_id	IS	NOT	NULL

		THEN

				BEGIN

						instructor_adm.g_instructor_id	:=	:NEW.INSTRUCTOR_ID;

						SELECT	first_name||’	‘||last_name

								INTO	instructor_adm.g_instructor_name

								FROM	instructor

							WHERE	instructor_id	=	instructor_adm.g_instructor_id;

				EXCEPTION

						WHEN	NO_DATA_FOUND

						THEN

								RAISE_APPLICATION_ERROR	(-20001,	‘This	is	not	a	valid

instructor’);

				END;

		END	IF;

END;

	You	created	a	new	statement	trigger	that	fires	after	the	INSERT	or	UPDATE

statement	has	been	issued.
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	section_aiu

AFTER	INSERT	OR	UPDATE	ON	section

DECLARE

		v_total	INTEGER;

BEGIN

		SELECT	COUNT(*)

				INTO	v_total

				FROM	section

			WHERE	instructor_id	=	instructor_adm.v_instructor_id;

		—	check	if	the	current	instructor	is	overbooked

		IF	v_total	>=	10	THEN

				RAISE_APPLICATION_ERROR

						(-20000,	‘Instructor,	‘||instructor_adm.v_instructor_name||

							’,	is	overbooked’);

		END	IF;

END;

Now	consider	a	compound	trigger	on	the	SECTION	table	that	fires	with	an	INSERT	or
UPDATE	operation.

For	Example		ch14_4a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TRIGGER	section_compound

FOR	INSERT	OR	UPDATE	ON	SECTION

COMPOUND	TRIGGER

		—	Declaration	Section

		v_instructor_id			INSTRUCTOR.INSTRUCTOR_ID%TYPE;

		v_instructor_name	VARCHAR2(50);

		v_total											INTEGER;

BEFORE	EACH	ROW	IS

BEGIN

		IF	:NEW.instructor_id	IS	NOT	NULL

		THEN

				BEGIN

						v_instructor_id	:=	:NEW.instructor_id;

						SELECT	first_name||’	‘||last_name

								INTO	v_instructor_name

								FROM	instructor

							WHERE	instructor_id	=	v_instructor_id;

				EXCEPTION

						WHEN	NO_DATA_FOUND	THEN

								RAISE_APPLICATION_ERROR

										(-20001,	‘This	is	not	a	valid	instructor’);

				END;

		END	IF;

END	BEFORE	EACH	ROW;

AFTER	STATEMENT	IS

BEGIN

		SELECT	COUNT(*)

				INTO	v_total

				FROM	section

			WHERE	instructor_id	=	v_instructor_id;

		—	check	if	the	current	instructor	is	overbooked

		IF	v_total	>=	10

		THEN

				RAISE_APPLICATION_ERROR

						(-20000,	‘Instructor,	‘||v_instructor_name||’,	is	overbooked’);

		END	IF;

END	AFTER	STATEMENT;

END;

In	this	trigger,	you	declare	three	variables,	two	of	which	were	previously	declared	in	the
package.	Next,	you	place	statements	from	two	individual	triggers	into	two	corresponding
sections	of	a	compound	trigger.

By	using	this	compound	trigger,	you	were	able	to	resolve	a	mutating	table	issue	with	a
simpler	approach.	You	eliminated	the	need	for	the	package	that	was	used	as	a	link	between
two	triggers	that	fired	at	different	times	in	a	transaction.

Note	that	the	UPDATE	statement	used	earlier
UPDATE	section

			SET	instructor_id	=	101

	WHERE	section_id	=	80;

still	causes	an	ORA-20000	error:
Click	here	to	view	code	image

ORA-20000:	Instructor,	Fernand	Hanks,	is	overbooked

ORA-06512:	at	“STUDENT.SECTION_COMPOUND”,	line	38

ORA-04088:	error	during	execution	of	trigger	‘STUDENT.SECTION_COMPOUND’

This	error	is	generated	by	the	trigger	SECTION_COMPOUND	and	does	not	contain	any
message	about	a	mutating	table.

Summary
In	Chapter	13,	you	began	exploring	various	types	of	triggers	supported	in	PL/SQL.	In	this
chapter,	you	continued	this	exploration	and	learned	about	mutating	table	issues.	You
learned	how	such	issues	were	resolved	in	Oracle	versions	prior	to	11g.	Finally,	you
learned	about	compound	triggers,	which	were	introduced	in	Oracle	11g,	and	saw	how
these	types	of	triggers	can	be	used	to	resolve	mutating	table	issues.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

15.	Collections

In	this	chapter,	you	will	learn	about

	PL/SQL	Tables

	Varrays

	Multilevel	Collections

Throughout	this	book	you	have	explored	different	types	of	PL/SQL	identifiers	or	variables
that	represent	individual	elements	(for	example,	a	variable	that	represents	a	grade	for	a
particular	student).	However,	often	in	your	programs	you	want	to	have	the	ability	to
represent	a	group	of	elements	(for	example,	the	grades	for	a	class	of	students).	To	support
this	technique,	PL/SQL	provides	collection	data	types	that	work	just	like	arrays	available
in	other	third-generation	programming	languages.

A	collection	is	a	group	of	elements	of	the	same	data	type.	Each	element	is	identified	by
a	unique	subscript	that	represents	its	position	in	the	collection.	In	this	chapter	you	will
learn	about	two	collection	data	types:	tables	and	varrays.	You	will	also	learn	about
multilevel	collections.

Lab	15.1:	PL/SQL	Tables

After	this	lab,	you	will	be	able	to

	Use	Associative	Arrays

	Use	Nested	Tables

	Use	Collection	Methods

A	PL/SQL	table	is	similar	to	a	one-column	database	table.	The	rows	of	a	PL/SQL	table	are
not	stored	in	any	predefined	order,	yet	when	they	are	retrieved	in	a	variable,	each	row	is
assigned	a	consecutive	subscript	starting	at	1,	as	shown	in	Figure	15.1.

Figure	15.1	PL/SQL	Table

Figure	15.1	shows	a	PL/SQL	table	consisting	of	integer	numbers.	Each	number	is
assigned	a	unique	subscript	that	corresponds	to	its	position	in	the	table.	For	example,	the
number	3	has	the	subscript	5	assigned	to	it	because	it	is	stored	in	the	fifth	row	of	the
PL/SQL	table.

There	are	two	types	of	PL/SQL	tables:	associative	arrays	(formerly	known	as	index-by
tables)	and	nested	tables.	They	have	the	same	structure,	and	their	rows	are	accessed	in	the
same	way—that	is,	via	subscript	notation.	The	main	difference	between	these	two	types	is
that	nested	tables	can	be	stored	in	a	database	column,	whereas	associative	arrays	cannot.

Associative	Arrays
The	general	syntax	for	creating	an	associative	array	is	shown	in	Listing	15.1	(the	reserved
words	and	phrases	surrounded	by	brackets	are	optional).

Listing	15.1	Associative	Array
Click	here	to	view	code	image

TYPE	type_name	IS	TABLE	OF	element_type	[NOT	NULL]

		INDEX	BY	index_type;

table_name	TYPE_NAME;

Notice	that	the	declaration	of	an	associative	array	requires	two	steps.	First,	a	table
structure	is	defined	using	the	TYPE	statement,	where	type_name	is	the	name	of	the	type
that	is	used	in	the	second	step	to	declare	an	actual	table.	An	element_type	is	a	data
type	of	the	individual	elements	in	the	arrays.	The	INDEX	BY	clause	specifies	which	data
type	is	used	for	indexing	the	associative	array;	it	can	be	either	a	string	type	(for	example,
VARCHAR2)	or	PLS_INTEGER.

Did	You	Know?

An	index	of	an	associative	array	may	be	populated	with	any	data	type	as	long
as	the	TO_CHAR	function	can	convert	it	to	VARCHAR2.

Second,	the	actual	array	variable	is	declared	based	on	the	type	specified	in	the	previous
step.	Consider	the	code	fragment	shown	in	Listing	15.2.

Listing	15.2	Declaration	of	an	Associative	Array
Click	here	to	view	code	image

DECLARE

		TYPE	last_name_type	IS	TABLE	OF	student.last_name%TYPE

				INDEX	BY	PLS_INTEGER;

		last_name_tab	last_name_type;

In	this	code	fragment,	type	last_name_type	is	declared	based	on	the	column
LAST_NAME	of	the	STUDENT	table	that	is	indexed	by	PLS_INTEGER.	Next,	the	actual
associative	array	called	last_name_tab	is	declared	to	be	of	a	last_name_type.

As	mentioned	earlier,	the	individual	elements	of	an	associative	array	are	referenced	via
subscript	notation	as	follows:

array_name(subscript)

This	technique	is	demonstrated	in	the	following	example.

For	Example		ch15_1a.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	name_cur	IS

				SELECT	last_name

						FROM	student

					WHERE	rownum	<	10;

		TYPE	last_name_type	IS	TABLE	OF	student.last_name%TYPE

				INDEX	BY	PLS_INTEGER;

		last_name_tab	last_name_type;

		v_index	PLS_INTEGER	:=	0;

BEGIN

		FOR	name_rec	IN	name_cur

		LOOP

				v_index	:=	v_index	+	1;

				last_name_tab(v_index)	:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE	(‘last_name(‘||v_index||’):

‘||last_name_tab(v_index));

		END	LOOP;

END;

In	this	example,	the	associative	array	last_name_tab	is	populated	with	last	names
from	the	STUDENT	table.	The	variable	v_index	is	used	as	a	subscript	to	reference
individual	table	elements.	This	example	produces	the	following	output:

last_name(1):	Kocka

last_name(2):	Jung

last_name(3):	Mulroy

last_name(4):	Brendler

last_name(5):	Carcia

last_name(6):	Tripp

last_name(7):	Frost

last_name(8):	Snow

last_name(9):	Scrittorale

Watch	Out!

Referencing	a	nonexistent	row	of	the	associative	array	raises	the
NO_DATA_FOUND	exception	as	follows:
Click	here	to	view	code	image

DECLARE

		CURSOR	name_cur	IS

				SELECT	last_name

						FROM	student

					WHERE	rownum	<	10;

		TYPE	last_name_type	IS	TABLE	OF	student.last_name%TYPE

				INDEX	BY	PLS_INTEGER;

		last_name_tab	last_name_type;

		v_index	PLS_INTEGER	:=	0;

BEGIN

		FOR	name_rec	IN	name_cur

		LOOP

				v_index	:=	v_index	+	1;

				last_name_tab(v_index)	:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE	(‘last_name(‘||	v_index	||’):

‘||last_name_tab(v_index));

		END	LOOP;

		DBMS_OUTPUT.PUT_LINE	(‘last_name(10):	‘||last_name_tab(10));

END;

This	version	of	the	script	produces	the	following	output:
last_name(1):	Kocka

last_name(2):	Jung

last_name(3):	Mulroy

last_name(4):	Brendler

last_name(5):	Carcia

last_name(6):	Tripp

last_name(7):	Frost

last_name(8):	Snow

last_name(9):	Scrittorale

ORA-01403:	no	data	found

ORA-06512:	at	line	19

Notice	that	the	DBMS_OUTPUT.PUT_LINE	statement	shown	in	bold
raises	the	NO_DATA_FOUND	exception	because	it	references	the	tenth	row	of
the	associative	array,	even	though	the	array	contains	only	nine	rows.

Nested	Tables
The	general	syntax	for	creating	a	nested	table	is	shown	in	Listing	15.3	(the	reserved	words
and	phrases	surrounded	by	brackets	are	optional).

Listing	15.3	Nested	Table
Click	here	to	view	code	image

TYPE	type_name	IS	TABLE	OF	element_type	[NOT	NULL];

table_name	TYPE_NAME;

Notice	that	this	declaration	is	very	similar	to	the	declaration	of	an	associative	array	except
that	there	is	no	INDEX	BY	clause.

Consider	the	code	fragment	shown	in	Listing	15.4.

Listing	15.4	Declaration	of	a	Nested	Table
Click	here	to	view	code	image

DECLARE

		TYPE	last_name_type	IS	TABLE	OF	student.last_name%TYPE;

		last_name_tab	last_name_type;

In	this	code	fragment,	type	last_name_type	is	declared	based	on	the	column
LAST_NAME	of	the	STUDENT	table.	Next,	the	actual	nested	table	called
last_name_tab	is	declared	to	be	of	a	last_name_type.

Unlike	an	associative	array,	a	nested	table	may	also	be	defined	as	a	stand-alone	user-
defined	type	via	the	CREATE	TYPE	statement.	This	scenario	is	illustrated	in	Listing	15.5.

Listing	15.5	Define	a	Nested	Table	Type	on	the	Schema	Level
Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	last_name_type		AS	TABLE	OF	VARCHAR2(30);

/

CREATE	OR	REPLACE	TYPE	last_name_table	AS	TABLE	OF	last_name_type;

/

In	Listing	15.5,	you	define	two	stand-alone	types	to	be	created	in	the	STUDENT
schema.	The	first	type,	last_name_type,	is	a	nested	table	type;	the	individual
elements	of	this	type	can	contain	stings	up	to	30	characters	long.	The	second	type,
last_name_table,	is	the	nested	table	itself,	which	is	based	on	the
last_name_type.

A	nested	table	must	be	initialized	before	its	individual	elements	can	be	referenced.
Consider	the	modified	version	of	the	example	given	earlier	in	this	lab.	Notice	that	the
last_name_type	is	defined	as	a	nested	table	(there	is	no	INDEX	BY	clause).	Affected
statements	are	shown	in	bold.

For	Example		ch15_1b.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	name_cur	IS

				SELECT	last_name

						FROM	student

					WHERE	rownum	<	10;

		TYPE	last_name_type	IS	TABLE	OF	student.last_name%TYPE;

		last_name_tab	last_name_type;

		v_index	PLS_INTEGER	:=	0;

BEGIN

		FOR	name_rec	IN	name_cur

		LOOP

				v_index	:=	v_index	+	1;

				last_name_tab(v_index)	:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE	(‘last_name(‘||	v_index	||’):

‘||last_name_tab(v_index));

		END	LOOP;

END;

This	example	causes	the	following	error:
Click	here	to	view	code	image

ORA-06531:	Reference	to	uninitialized	collection

ORA-06512:	at	line	15

It	causes	this	error	because	a	nested	table	is	automatically	NULL	when	it	is	declared.	In
other	words,	there	are	no	individual	elements	yet,	because	the	nested	table	itself	is	NULL.
To	reference	the	individual	elements	of	the	nested	table,	the	table	must	be	initialized	with
the	help	of	a	system-defined	function	called	a	constructor.	The	constructor	has	the	same
name	as	the	nested	table	type.

For	example,	the	statement
Click	here	to	view	code	image

last_name_tab	:=	last_name_type(‘Rosenzweig’,	‘Rakhimov’);

initializes	the	last_name_tab	table	to	two	elements.	Most	of	the	time,	you	will	not
know	in	advance	which	values	should	constitute	a	particular	nested	table.	In	this	scenario,
the	following	statement	produces	an	empty	but	non-NULL	nested	table:
Click	here	to	view	code	image

last_name_tab	:=	last_name_type();

Notice	that	there	are	no	arguments	passed	to	a	constructor.

Now	consider	a	modified	version	of	the	example	shown	previously.	Changes	are
highlighted	in	bold.

For	Example		ch15_1c.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	name_cur	IS

				SELECT	last_name

						FROM	student

					WHERE	rownum	<	10;

		TYPE	last_name_type	IS	TABLE	OF	student.last_name%TYPE;

		last_name_tab	last_name_type	:=	last_name_type();

		v_index	PLS_INTEGER	:=	0;

BEGIN

		FOR	name_rec	IN	name_cur

		LOOP

				v_index	:=	v_index	+	1;

				last_name_tab.EXTEND;

				last_name_tab(v_index)	:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE	(‘last_name(‘||v_index||’):

‘||last_name_tab(v_index));

		END	LOOP;

END;

In	this	version,	the	nested	table	is	initialized	at	the	time	of	the	declaration.	As	a
consequence,	it	is	empty,	but	non-NULL.	The	cursor	loop	includes	a	statement	with	one	of
the	collection	methods,	EXTEND.	This	method	allows	you	to	increase	the	size	of	the
collection.	Note	that	the	EXTEND	method	cannot	be	used	with	associative	arrays.	The	next
section	in	this	lab	provides	a	detailed	explanation	of	the	various	collection	methods.

Next,	the	nested	table	is	assigned	values	just	like	the	associative	array	in	the	original
version	of	the	example.	When	run,	this	version	of	the	example	completes	successfully	and
produces	the	following	output:

last_name(1):	Kocka

last_name(2):	Jung

last_name(3):	Mulroy

last_name(4):	Brendler

last_name(5):	Carcia

last_name(6):	Tripp

last_name(7):	Frost

last_name(8):	Snow

last_name(9):	Scrittorale

Did	You	Know?

What	is	the	difference	between	NULL	and	empty	collections?	If	a	collection
has	not	been	initialized,	referencing	its	individual	elements	causes	the
following	error:
Click	here	to	view	code	image

DECLARE

		TYPE	integer_type	IS	TABLE	OF	INTEGER;

		integer_tab	integer_type;

		v_index	PLS_INTEGER	:=	1;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(integer_tab(v_index));

END;

ORA-06531:	Reference	to	uninitialized	collection

ORA-06512:	at	line	7

If	a	collection	has	been	initialized	so	that	it	is	non-NULL	yet	is	empty,
referencing	its	individual	elements	causes	a	different	error:
Click	here	to	view	code	image

DECLARE

		TYPE	integer_type	IS	TABLE	OF	INTEGER;

		integer_tab	integer_type	:=	integer_type();

		v_index	PLS_INTEGER	:=	1;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(integer_tab(v_index));

END;

ORA-06533:	Subscript	beyond	count

ORA-06512:	at	line	7

Collection	Methods
In	example	ch15_1c.sql,	you	saw	one	of	the	collection	methods—in	this	case,	EXTEND.	A
collection	method	is	either	a	built-in	procedure	or	a	function	that	is	called	using	dot
notation	as	shown	in	Listing	15.6.

Listing	15.6	Invoking	a	Collection	Method
collection_name.method_name

The	following	list	identifies	the	collection	methods	that	allow	you	to	manipulate	or	gain
information	about	a	particular	collection:

	EXISTS:	This	function	returns	TRUE	if	a	specified	element	exists	in	a	collection
and	can	be	used	to	avoid	raising	SUBSCRIPT_OUTSIDE_LIMIT	exceptions.

	COUNT:	This	function	returns	the	total	number	of	elements	in	a	collection.

	EXTEND:	This	procedure	increases	the	size	of	a	collection.

	DELETE:	This	procedure	deletes	either	all	elements,	just	the	elements	in	the

specified	range,	or	a	particular	element	from	a	collection.	PL/SQL	keeps
placeholders	of	the	deleted	elements.

	FIRST	and	LAST:	These	functions	return	subscripts	of	the	first	and	last	elements	of
a	collection.	If	the	first	element	of	a	nested	table	is	deleted,	the	FIRST	method
returns	a	value	greater	than	1.	If	elements	are	deleted	from	the	middle	of	a	nested
table,	the	LAST	method	returns	a	value	greater	than	the	COUNT	method.

	PRIOR	and	NEXT:	These	functions	return	subscripts	that	precede	and	succeed	a
specified	collection	subscript.

	TRIM:	This	procedure	removes	either	one	or	a	specified	number	of	elements	from
the	end	of	a	collection.	PL/SQL	does	not	keep	placeholders	for	the	trimmed
elements.

Watch	Out!

The	EXTEND	and	TRIM	methods	cannot	be	used	with	associative	arrays.

The	following	example	illustrates	the	use	of	various	collection	methods.

For	Example		ch15_2a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	index_by_type	IS	TABLE	OF	NUMBER

				INDEX	BY	PLS_INTEGER;

		index_by_table	index_by_type;

		TYPE	nested_type	IS	TABLE	OF	NUMBER;

		nested_table	nested_type	:=	nested_type(1,	2,	3,	4,	5,	6,	7,	8,	9,	10);

BEGIN

		—	Populate	associative	array

		FOR	i	IN	1..10

		LOOP

				index_by_table(i)	:=	i;

		END	LOOP;

		—	Check	if	the	associative	array	has	third	element

		IF	index_by_table.EXISTS(3)

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘index_by_table(3)	=	‘||index_by_table(3));

		END	IF;

		—	Delete	10th	element	from	associative	array

		index_by_table.DELETE(10);

		—	Delete	10th	element	from	nested	table

		nested_table.DELETE(10);

		—	Delete	elements	1	through	3	from	nested	table

		nested_table.DELETE(1,3);

		—	Get	element	counts	for	associative	array	and	nested	table

		DBMS_OUTPUT.PUT_LINE	(‘index_by_table.COUNT	=	‘||index_by_table.COUNT);

		DBMS_OUTPUT.PUT_LINE	(‘nested_table.COUNT			=	‘||nested_table.COUNT);

		—	Get	first	and	last	indexes	of	the	associative	array

		—	and	nested	table

		DBMS_OUTPUT.PUT_LINE	(‘index_by_table.FIRST	=	‘||index_by_table.FIRST);

		DBMS_OUTPUT.PUT_LINE	(‘index_by_table.LAST		=	‘||index_by_table.LAST);

		DBMS_OUTPUT.PUT_LINE	(‘nested_table.FIRST			=	‘||nested_table.FIRST);

		DBMS_OUTPUT.PUT_LINE	(‘nested_table.LAST				=	‘||nested_table.LAST);

		—	Get	indexes	that	precede	and	succeed	2nd	indexes	of	the	associative

array

		—	and	nested	table

		DBMS_OUTPUT.PUT_LINE	(‘index_by_table.PRIOR(2)	=

‘||index_by_table.PRIOR(2));

		DBMS_OUTPUT.PUT_LINE	(‘index_by_table.NEXT(2)		=

‘||index_by_table.NEXT(2));

		DBMS_OUTPUT.PUT_LINE	(‘nested_table.PRIOR(2)			=

‘||nested_table.PRIOR(2));

		DBMS_OUTPUT.PUT_LINE	(‘nested_table.NEXT(2)				=

‘||nested_table.NEXT(2));

		—	Delete	last	two	elements	of	the	nested	table

		nested_table.TRIM(2);

		—	Delete	last	element	of	the	nested	table

		nested_table.TRIM;

		—	Get	last	index	of	the	nested	table

		DBMS_OUTPUT.PUT_LINE(‘nested_table.LAST	=	‘||nested_table.LAST);

END;

Examine	the	output	returned	by	the	preceding	example:
index_by_table(3)							=	3

index_by_table.COUNT				=	9

nested_table.COUNT						=	6

index_by_table.FIRST				=	1

index_by_table.LAST					=	9

nested_table.FIRST						=	4

nested_table.LAST							=	9

index_by_table.PRIOR(2)	=	1

index_by_table.NEXT(2)		=	3

nested_table.PRIOR(2)			=

nested_table.NEXT(2)				=	4

nested_table.LAST							=	7

The	first	line	of	the	output
index_by_table(3)	=	3

demonstrates	that	the	EXISTS	method	returns	TRUE.	As	a	result,	the	IF	statement
IF	index_by_table.EXISTS(3)

THEN

		…

evaluates	to	TRUE	as	well.

The	second	and	third	lines	of	the	output
index_by_table.COUNT	=	9

nested_table.COUNT			=	6

show	the	results	of	the	COUNT	method	after	some	elements	were	deleted	from	the
associative	array	and	nested	table.

Next,	the	fourth	through	seventh	lines	of	the	output
index_by_table.FIRST	=	1

index_by_table.LAST		=	9

nested_table.FIRST			=	4

nested_table.LAST				=	9

show	the	results	of	the	FIRST	and	LAST	methods.	Notice	that	the	FIRST	method	applied
to	the	nested	table	returns	4	because	the	first	three	elements	were	deleted	earlier.

Next,	lines	8	through	11	of	the	output
index_by_table.PRIOR(2)	=	1

index_by_table.NEXT(2)		=	3

nested_table.PRIOR(2)			=

nested_table.NEXT(2)				=	4

show	the	results	of	the	PRIOR	and	NEXT	methods.	Notice	that	the	PRIOR	method	applied
to	the	nested	table	returns	NULL	because	the	first	element	was	deleted	earlier.

Finally,	the	last	line	of	the	output
nested_table.LAST	=	7

shows	the	value	of	the	last	subscript	after	the	last	three	elements	of	the	nested	table	were
removed.	Once	the	DELETE	method	is	issued,	the	PL/SQL	keeps	placeholders	of	the
deleted	elements.	Therefore,	the	first	call	of	the	TRIM	method	removed	the	ninth	and	tenth
elements	from	the	nested	table,	and	the	second	call	of	the	TRIM	method	removed	the
eighth	element	from	the	nested	table.	As	a	result,	the	LAST	method	returned	the	value	7	as
the	last	subscript	of	the	nested	table.

Lab	15.2:	Varrays

After	this	lab,	you	will	be	able	to

	Use	Arrays

A	varray—that	is,	a	variable-size	array—is	another	collection	type.	Similar	to	PL/SQL
tables,	each	element	of	a	varray	is	assigned	a	consecutive	subscript	starting	at	1.	Figure
15.2	shows	a	varray	consisting	of	five	integer	numbers,	where	each	number	is	assigned	a
unique	subscript	that	corresponds	to	its	position	in	the	varray.

Figure	15.2	Varray

A	varray	has	a	maximum	size.	In	other	words,	a	subscript	of	a	varray	has	a	fixed	lower
bound	equal	to	1,	and	an	upper	bound	that	is	extensible	if	such	a	need	arises.	In	Figure
15.2,	the	upper	bound	of	a	varray	is	5,	but	it	can	be	extended	to	6,	7,	and	so	on,	up	to	10.
Therefore,	a	varray	can	contain	a	number	of	elements,	varying	from	zero	(empty	array)	to
its	maximum	size.	Recall	that	PL/SQL	tables	do	not	have	a	maximum	size	that	must	be

specified	explicitly.

The	general	syntax	for	creating	a	varray	is	shown	in	Listing	15.7	(the	reserved	words
and	phrases	surrounded	by	brackets	are	optional).

Listing	15.7	Varray
Click	here	to	view	code	image

TYPE	type_name	IS	{VARRAY	|	VARYING	ARRAY}	(size_limit)	OF	element_type

[NOT	NULL];

varray_name	TYPE_NAME;

First,	a	varray	structure	is	defined	using	the	TYPE	statement,	where	type_name	is	the
name	of	the	type	that	is	used	in	the	second	step	to	declare	an	actual	varray.	Notice	that
there	are	two	variations	of	the	type,	VARRAY	and	VARYING	ARRAY.	A	size_limit	is
a	positive	integer	literal	that	specifies	the	upper	bound	of	a	varray.

Second,	the	actual	varray	is	declared	based	on	the	type	specified	in	the	first	step.

Consider	the	code	fragment	shown	in	Listing	15.8.

Listing	15.8	Declaring	a	Varray
Click	here	to	view	code	image

DECLARE

		TYPE	last_name_type	IS	VARRAY(10)	OF	student.last_name%TYPE;

		last_name_varray	last_name_type;

In	this	example,	type	last_name_type	is	declared	as	a	varray	of	10	elements	based
on	the	column	LAST_NAME	of	the	STUDENT	table.	Next,	the	actual	varray
last_name_varray	is	declared	based	on	the	last_name_type.	Similarly	to	nested
tables,	a	varray	may	be	defined	as	a	stand-alone	user-defined	type	via	the	CREATE	TYPE
statement.

Just	like	a	nested	table,	a	varray	is	automatically	NULL	when	it	is	declared	and	must	be
initialized	before	its	individual	elements	can	be	referenced.	In	the	following	modified
version	of	an	example	used	in	Lab	15.1,	ch15_1c.sql,	instead	of	using	a	nested	table,	the
script	version	uses	varray	(modified	statements	are	highlighted	in	bold).

For	Example		ch15_1d.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	name_cur	IS

				SELECT	last_name

						FROM	student

					WHERE	rownum	<	10;

		TYPE	last_name_type	IS	VARRAY(10)	OF	student.last_name%TYPE;

		last_name_varray	last_name_type	:=	last_name_type();

		v_index	PLS_INTEGER	:=	0;

BEGIN

		FOR	name_rec	IN	name_cur

		LOOP

				v_index	:=	v_index	+	1;

				last_name_varray.EXTEND;

				last_name_varray(v_index)	:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE	(‘last_name(‘||v_index||’):

‘||last_name_varray(v_index));

		END	LOOP;

END;

This	example	produces	the	following	output:
last_name(1):	Kocka

last_name(2):	Jung

last_name(3):	Mulroy

last_name(4):	Brendler

last_name(5):	Carcia

last_name(6):	Tripp

last_name(7):	Frost

last_name(8):	Snow

last_name(9):	Scrittorale

Based	on	the	preceding	example,	you	might	realize	that	collection	methods	seen	in	Lab
15.1	can	be	used	with	varrays	as	well.	Consider	the	following	example,	which	illustrates
the	use	of	various	collection	methods	when	applied	to	a	varray:

For	Example		ch15_3a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	varray_type	IS	VARRAY(10)	OF	NUMBER;

		varray	varray_type	:=	varray_type(1,	2,	3,	4,	5,	6);

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘varray.COUNT	=	‘||varray.COUNT);

		DBMS_OUTPUT.PUT_LINE	(‘varray.LIMIT	=	‘||varray.LIMIT);

		DBMS_OUTPUT.PUT_LINE	(‘varray.FIRST	=	‘||varray.FIRST);

		DBMS_OUTPUT.PUT_LINE	(‘varray.LAST		=	‘||varray.LAST);

		—	Append	two	copies	of	the	4th	element	to	the	varray

		varray.EXTEND(2,	4);

		DBMS_OUTPUT.PUT_LINE	(‘varray.LAST		=	‘||varray.LAST);

		DBMS_OUTPUT.PUT_LINE	(‘varray(‘||varray.LAST||’)		=

‘||varray(varray.LAST));

		—	Trim	last	two	elements

		varray.TRIM(2);

		DBMS_OUTPUT.PUT_LINE(‘varray.LAST	=		’||varray.LAST);

END;

This	example	returns	the	following	output:
varray.COUNT	=	6

varray.LIMIT	=	10

varray.FIRST	=	1

varray.LAST		=	6

varray.LAST		=	8

varray(8)				=	4

varray.LAST		=	6

The	first	two	lines	of	the	output
varray.COUNT	=	6

varray.LIMIT	=	10

show	the	results	of	the	COUNT	and	LIMIT	methods,	respectively.	Recall	that	the	COUNT
method	returns	the	number	of	elements	that	a	collection	contains.	This	collection	has	been
initialized	to	six	elements,	so	the	COUNT	method	returns	a	value	of	6.

The	next	line	of	output	corresponds	to	another	collection	method,	LIMIT.	This	method
returns	the	maximum	number	of	elements	that	a	collection	can	contain	and	is	typically
used	with	varrays	because	varrays	have	an	upper	bound	specified	at	the	time	of
declaration.	This	varray	has	an	upper	bound	of	10,	so	the	LIMIT	method	returns	a	value
of	10.

Did	You	Know?

When	the	LIMIT	method	is	used	with	associative	arrays	and	nested	tables,	it
returns	NULL	because	those	collection	types	do	not	have	a	maximum	size.

The	third	and	fourth	lines	of	the	output
varray.FIRST	=	1

varray.LAST		=	6

show	the	results	of	the	FIRST	and	LAST	methods.	The	fifth	and	six	lines	of	the	output
varray.LAST	=	8

varray(8)			=	4

show	the	results	of	the	LAST	method	and	the	value	of	the	eighth	element	of	the	collection
after	the	EXTEND	method	has	increased	the	size	of	the	collection.	Notice	that	the	EXTEND
method

varray.EXTEND(2,	4);

appends	two	copies	of	the	fourth	element	to	the	collection.	As	a	result,	the	seventh	and
eighth	elements	both	contain	a	value	of	4.

Finally,	the	last	line	of	output
varray.LAST	=	6

shows	the	value	of	the	last	subscript	after	the	last	two	elements	were	removed	via	the
TRIM	method.

Watch	Out!

You	cannot	use	the	DELETE	method	with	a	varray	to	remove	its	elements.
Unlike	PL/SQL	tables,	varrays	are	dense,	and	using	the	DELETE	method
causes	an	error,	as	illustrated	in	the	following	example:
Click	here	to	view	code	image

DECLARE

		TYPE	varray_type	IS	VARRAY(3)	OF	CHAR(1);

		varray	varray_type	:=	varray_type(‘A’,	‘B’,	‘C’);

BEGIN

		varray.DELETE(3);

END;

ORA-06550:	line	6,	column	4:

PLS-00306:	wrong	number	or	types	of	arguments	in	call	to	‘DELETE’

ORA-06550:	line	6,	column	4:

PL/SQL:	Statement	ignored

You	have	now	seen	how	to	define	and	use	all	three	collection	data	types:	associative
arrays,	nested	tables,	and	varrays.	Table	15.1	summarizes	their	similarities	and	differences.

Table	15.1	Associative	Arrays,	Nested	Tables,	and	Varrays

Lab	15.3:	Multilevel	Collections

After	this	lab,	you	will	be	able	to

	Use	Multilevel	Collections

So	far,	you	have	seen	various	examples	of	collections	with	the	element	type	based	on	a
scalar	type,	such	as	NUMBER	and	VARCHAR2.	However,	PL/SQL	provides	you	with	the
ability	to	create	collections	whose	element	type	is	based	on	a	collection	type.	Such
collections	are	called	multilevel	collections.

Figure	15.3	shows	a	varray	of	varrays,	also	called	a	nested	varray.	In	this	case,	the
varray	of	varrays	consists	of	three	elements,	where	each	individual	element	is	a	varray

consisting	of	four	integer	numbers.

Figure	15.3	A	Varray	of	Varrays

To	reference	an	individual	element	of	a	varray	of	varrays,	you	use	the	notation	as	shown
in	Listing	15.9.

Listing	15.9	Referencing	an	Element	of	a	Nested	Varray
Click	here	to	view	code	image

varray_name(subscript	of	the	outer	varray)(subscript	of	the	inner	varray)

For	example,	varray(1)(3)	in	Figure	15.3	equals	6;	similarly,	varray(2)(1)
equals	1.	Now	consider	the	following	example	based	on	Figure	15.3.

For	Example		ch15_4a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	varray_type1	IS	VARRAY(4)	OF	INTEGER;

		TYPE	varray_type2	IS	VARRAY(3)	OF	varray_type1;

		varray1	varray_type1	:=	varray_type1(2,	4,	6,	8);

		varray2	varray_type2	:=	varray_type2(varray1);

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Varray	of	integers’);

		FOR	i	IN	1..4

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘varray1(‘||i||’):	‘||varray1(i));

		END	LOOP;

		varray2.EXTEND;

		varray2(2)	:=	varray_type1(1,	3,	5,	7);

		DBMS_OUTPUT.PUT_LINE	(chr(10)||‘Varray	of	varrays	of	integers’);

		FOR	i	IN	1..2

		LOOP

				FOR	j	IN	1..4

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘varray2(‘||i||’)(‘||j||’):	‘||varray2(i)(j));

				END	LOOP;

		END	LOOP;

END;

In	the	declaration	portion	of	the	example,	you	define	two	varray	types.	The	first	type,
varray_type1,	is	based	on	the	INTEGER	data	type	and	can	contain	up	to	four
elements.	The	second	type,	varray_type2,	is	based	on	the	varray_type1	and	can
contain	up	to	three	elements,	where	each	individual	element	may	itself	contain	up	to	four
elements.	Next,	you	declare	two	varrays	based	on	the	types	just	described.	The	first
varray,	varray1,	is	declared	as	varray_type1	and	initialized	so	that	its	four	elements
are	populated	with	the	first	four	even	numbers.	The	second	varray,	varray2,	is	declared

as	varray_type2,	so	that	each	individual	element	is	a	varray	consisting	of	four	integer
numbers,	and	initialized	so	that	its	first	varray	element	is	populated.

In	the	executable	portion	of	the	example,	you	display	the	values	of	the	varray1	on	the
screen.	Next,	you	extend	the	upper	bound	of	the	varray2	by	1,	and	populate	its	second
element	as	follows:
Click	here	to	view	code	image

varray2(2)	:=	varray_type1(1,	3,	5,	7);

Here	you	are	using	a	constructor	corresponding	to	the	varray_type1	because	each
element	of	the	varray2	is	based	on	the	varray1	collection.	In	other	words,	the	same
result	could	be	achieved	via	the	following	two	statements:
Click	here	to	view	code	image

varray1(2)	:=	varray_type1(1,	3,	5,	7);

varray2(2)	:=	varray_type2(varray1);

Once	the	second	element	of	the	varray2	is	populated,	you	display	the	results	on	the
screen	via	nested	numeric	FOR	loops.

This	example	produces	the	following	output:
Varray	of	integers

varray1(1):	2

varray1(2):	4

varray1(3):	6

varray1(4):	8

Varray	of	varrays	of	integers

varray2(1)(1):	2

varray2(1)(2):	4

varray2(1)(3):	6

varray2(1)(4):	8

varray2(2)(1):	1

varray2(2)(2):	3

varray2(2)(3):	5

varray2(2)(4):	7

Notice	the	blank	line	separating	two	portions	of	the	example	output.	It	is	included	for
the	readability	purposes	and	created	by	adding	Oracle’s	built-in	function	CHR(10)	to	the
DBMS_OUTPUT.PUT_LINE	statement.	This	function	adds	a	line	feed,	which	in	turn
separates	two	portions	of	the	output	with	the	blank	line.

Summary
In	this	chapter,	you	learned	about	associative	arrays,	nested	tables,	and	varrays	collection
types	supported	in	PL/SQL.	You	also	learned	how	to	create	stand-alone	user-defined
collection	types.	In	addition,	you	discovered	how	to	manipulate	individual	collection
elements	with	the	help	of	built-in	procedures	and	functions	designed	specifically	for	this
purpose	called	methods.	Finally,	you	learned	how	different	collection	types	may	be	nested
inside	another.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

16.	Records

In	this	chapter,	you	will	learn	about

	Record	Types

	Nested	Records

	Collections	of	Records

In	Chapter	11,	you	were	briefly	introduced	to	the	concept	of	a	record	type.	You	learned
that	a	record	is	a	composite	data	structure	that	allows	you	to	combine	different	yet	related
data	into	a	logical	unit.	You	also	learned	that	PL/SQL	supports	three	kinds	of	record	types:
table	based,	cursor	based,	and	user	defined.	In	this	chapter,	you	will	revisit	the	table-based
and	cursor-based	record	types	and	learn	about	the	user-defined	record	type.	In	addition,
you	will	learn	about	records	that	contain	collections	and	other	records	(called	nested
records)	and	collections	of	records.

Lab	16.1:	Record	Types

After	this	lab,	you	will	be	able	to

	Use	Table-Based	and	Cursor-Based	Records

	Use	User-Defined	Records

	Understand	Record	Compatibility

A	record	structure	is	somewhat	similar	to	a	row	of	a	database	table.	Each	data	item	is
stored	in	a	field	with	its	own	name	and	data	type.	For	example,	suppose	you	have	various
data	about	a	company,	such	as	its	name,	address,	and	number	of	employees.	A	record
containing	a	field	for	each	of	these	items	allows	you	to	treat	a	company	as	a	logical	unit,
thereby	making	it	easier	to	organize	and	represent	the	company’s	information.

Table-Based	and	Cursor-Based	Records
The	%ROWTYPE	attribute	enables	you	to	create	table-based	and	cursor-based	records.	It	is
similar	to	the	%TYPE	attribute	that	is	used	to	define	scalar	variables.	Consider	the
following	example	of	a	table-based	record.

For	Example		ch16_1a.sql
Click	here	to	view	code	image

DECLARE

		course_rec	course%ROWTYPE;

BEGIN

		SELECT	*

				INTO	course_rec

				FROM	course

			WHERE	course_no	=	25;

		DBMS_OUTPUT.PUT_LINE	(‘Course	No:	‘||course_rec.course_no);

		DBMS_OUTPUT.PUT_LINE	(‘Course	Description:	‘||course_rec.description);

		DBMS_OUTPUT.PUT_LINE	(‘Prerequisite:	‘||course_rec.prerequisite);

END;

The	course_rec	record	has	the	same	structure	as	a	row	in	the	COURSE	table.	As	a
result,	there	is	no	need	to	reference	individual	record	fields	when	the	SELECT	INTO
statement	populates	the	course_rec	record.	However,	a	record	does	not	have	a	value	of
its	own;	rather,	each	individual	field	holds	a	value.	Therefore,	to	display	record
information	on	the	screen,	the	individual	fields	are	referenced	using	the	dot	notation,	as
shown	in	the	DBMS_OUTPUT.PUT_LINE	statements.

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

Course	No:	25

Course	Description:	Intro	to	Programming

Prerequisite:	140

Watch	Out!

A	record	does	not	have	a	value	of	its	own.	For	this	reason,	you	cannot	test
records	for	nullity,	equality,	or	inequality.	In	other	words,	the	statements
Click	here	to	view	code	image

IF	course_rec	IS	NULL	THEN	…

IF	course_rec1	=	course_rec2	THEN	…

are	illegal	and	will	cause	syntax	errors.

Next,	consider	an	example	of	a	cursor-based	record.

For	Example		ch16_2a.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	student_cur	IS

				SELECT	first_name,	last_name,	registration_date

						FROM	student

					WHERE	rownum	<=	4;

		student_rec	student_cur%ROWTYPE;

BEGIN

		OPEN	student_cur;

		LOOP

				FETCH	student_cur	INTO	student_rec;

				EXIT	WHEN	student_cur%NOTFOUND;

				DBMS_OUTPUT.PUT_LINE

						(‘Name:	‘||student_rec.first_name||’	‘||student_rec.last_name);

				DBMS_OUTPUT.PUT_LINE

						(‘Registration	Date:	‘||to_char(student_rec.registration_date,

‘MM/DD/YYYY’));

		END	LOOP;

END;

The	student_rec	record	has	the	same	structure	as	the	rows	returned	by	the
student_cur	cursor.	As	a	result,	similar	to	the	previous	example,	there	is	no	need	to
reference	the	individual	fields	when	data	is	fetched	from	the	cursor	to	the	record.

When	run,	this	example	produces	the	following	output:
Name:	George	Kocka

Registration	Date:	02/08/2007

Name:	Janet	Jung

Registration	Date:	02/08/2007

Name:	Kathleen	Mulroy

Registration	Date:	02/08/2007

Name:	Joel	Brendler

Registration	Date:	02/08/2007

Because	a	cursor-based	record	is	defined	based	on	the	rows	returned	by	a	select
statement	of	a	cursor,	its	declaration	must	be	proceeded	by	a	cursor	declaration.	In	other
words,	a	cursor-based	record	is	dependent	on	a	particular	cursor	and	cannot	be	declared
prior	to	its	cursor.

Consider	a	modified	version	of	the	previous	example.	The	cursor-based	record	variable
is	declared	before	the	cursor	(changes	are	shown	in	bold).	In	turn,	when	run,	this	example
causes	a	syntax	error.

For	Example		ch16_2b.sql
Click	here	to	view	code	image

DECLARE

		student_rec	student_cur%ROWTYPE;

		CURSOR	student_cur	IS

				SELECT	first_name,	last_name,	registration_date

					FROM	student

				WHERE	rownum	<=	4;

BEGIN

		OPEN	student_cur;

		LOOP

				FETCH	student_cur	INTO	student_rec;

				EXIT	WHEN	student_cur%NOTFOUND;

				DBMS_OUTPUT.PUT_LINE

						(‘Name:	‘||student_rec.first_name||’	‘||student_rec.last_name);

				DBMS_OUTPUT.PUT_LINE

						(‘Registration	Date:	‘||	to_char(student_rec.registration_date,

‘MM/DD/YYYY’));

		END	LOOP;

END;

This	example	produces	the	following	erroneous	output:
Click	here	to	view	code	image

ORA-06550:	line	2,	column	16:

PLS-00320:	the	declaration	of	the	type	of	this	expression	is	incomplete	or

malformed

ORA-06550:	line	2,	column	16:

PL/SQL:	Item	ignored

ORA-06550:	line	12,	column	30:

PLS-00320:	the	declaration	of	the	type	of	this	expression	is	incomplete	or

malformed

ORA-06550:	line	12,	column	7:

PL/SQL:	SQL	Statement	ignored

ORA-06550:	line	16,	column	21:

PLS-00320:	the	declaration	of	the	type	of	this	expression	is	incomplete	or

malformed

ORA-06550:	line	15,	column	7:

PL/SQL:	Statement	ignored

ORA-06550:	line	18,	column	40:

PLS-00320:	the	declaration	of	the	type	of	this	expression	is	incomplete	or

malformed

ORA-06550:	line	17,	column	7:

PL/SQL:	Statement	ignored

User-Defined	Records
So	far,	you	have	seen	how	to	create	records	based	on	a	table	or	a	cursor.	However,	you
may	need	to	create	a	record	that	is	not	based	on	any	table	or	any	one	cursor.	For	such
situations,	PL/SQL	provides	a	user-defined	record	type	that	allows	you	to	have	complete
control	over	the	record	structure.

The	general	syntax	for	creating	a	user-defined	record	is	shown	in	Listing	16.1	(the
reserved	words	and	phrases	surrounded	by	brackets	are	optional).

Listing	16.1	User-Defined	Record	Type
Click	here	to	view	code	image

TYPE	type_name	IS	RECORD

		(field_name1	datatype1	[NOT	NULL]	[:=	DEFAULT	EXPRESSION],

			field_name2	datatype2	[NOT	NULL]	[:=	DEFAULT	EXPRESSION],

			…

			field_nameN	datatypeN	[NOT	NULL]	[:=	DEFAULT	EXPRESSION]);

record_name	TYPE_NAME;

First,	a	record	structure	is	defined	using	the	TYPE	statement,	where	type_name	is	the
name	of	the	record	type	that	is	used	in	the	second	step	to	declare	the	actual	record.
Enclosed	in	the	parentheses	are	declarations	of	each	record	field	with	its	name	and	data
type.	You	may	also	specify	a	NOT	NULL	constraint	and/or	assign	a	default	value.	Second,
the	actual	record	is	declared	based	on	the	type	specified	in	the	previous	step.	Consider	the
following	example.

For	Example		ch16_3a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	time_rec_type	IS	RECORD

				(curr_date	DATE,

					curr_day		VARCHAR2(12),

					curr_time	VARCHAR2(8)	:=	‘00:00:00’);

		time_rec	TIME_REC_TYPE;

BEGIN

		SELECT	sysdate

				INTO	time_rec.curr_date

				FROM	dual;

		time_rec.curr_day		:=	TO_CHAR(time_rec.curr_date,	‘DAY’);

		time_rec.curr_time	:=	TO_CHAR(time_rec.curr_date,	‘HH24:MI:SS’);

		DBMS_OUTPUT.PUT_LINE	(‘Date:	‘||to_char(time_rec.curr_date,	‘MM/DD/YYYY

HH24:MI:SS’));

		DBMS_OUTPUT.PUT_LINE	(‘Day:		’||time_rec.curr_day);

		DBMS_OUTPUT.PUT_LINE	(‘Time:		’||time_rec.curr_time);

END;

In	this	example,	time_rec_type	is	a	user-defined	record	type	that	contains	three
fields.	The	last	field,	curr_time,	has	been	initialized	to	a	particular	value.	Here,
time_rec	is	a	user-defined	record	based	on	the	time_rec_type.	Unlike	in	the
previous	examples,	each	record	field	is	assigned	a	value	individually.	When	run,	the	script
produces	the	following	output:

Date:	05/20/2014	10:26:32

Day:		TUESDAY

Time:	10:26:32

As	mentioned	earlier,	when	declaring	a	record	type,	you	may	specify	a	NOT	NULL
constraint	for	individual	fields.	Such	fields	must	be	initialized.	The	following	example
causes	a	syntax	error	because	a	record	field	has	not	been	initialized	after	a	NOT	NULL
constraint	has	been	defined	on	it.

For	Example		ch16_4a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	sample_type	IS	RECORD

				(field1	NUMBER(3),

					field2	VARCHAR2(3)	NOT	NULL);

		sample_rec	sample_type;

BEGIN

		sample_rec.field1	:=	10;

		sample_rec.field2	:=	‘ABC’;

		DBMS_OUTPUT.PUT_LINE	(‘sample_rec.field1	=	‘||sample_rec.field1);

		DBMS_OUTPUT.PUT_LINE	(‘sample_rec.field2	=	‘||sample_rec.field2);

END;

The	preceding	example	produces	this	output:
Click	here	to	view	code	image

ORA-06550:	line	4,	column	8:

PLS-00218:	a	variable	declared	NOT	NULL	must	have	an	initialization

assignment

Now	consider	the	correct	version	of	this	example	(modified	statements	are	highlighted
in	bold).

For	Example		ch16_4b.sql
Click	here	to	view	code	image

DECLARE

		TYPE	sample_type	IS	RECORD

				(field1	NUMBER(3),

					field2	VARCHAR2(3)	NOT	NULL	:=	‘ABC’);	—	initialize	a	NOT	NULL	field

		sample_rec	sample_type;

BEGIN

		sample_rec.field1	:=	10;

		DBMS_OUTPUT.PUT_LINE	(‘sample_rec.field1	=	‘||sample_rec.field1);

		DBMS_OUTPUT.PUT_LINE	(‘sample_rec.field2	=	‘||sample_rec.field2);

END;

This	version	of	the	example	produces	the	following	output:
sample_rec.field1	=	10

sample_rec.field2	=	ABC

Record	Compatibility
You	have	seen	that	a	record	is	defined	by	its	name,	structure,	and	type.	Actually,	two
records	may	have	the	same	structure	yet	be	of	a	different	type.	In	such	a	case,	certain
restrictions	apply	to	the	operations	between	the	different	record	types.	Consider	the
following	example:

For	Example		ch16_5a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	name_type1	IS	RECORD

				(first_name	VARCHAR2(15),

					last_name		VARCHAR2(30));

		TYPE	name_type2	IS	RECORD

				(first_name	VARCHAR2(15),

					last_name		VARCHAR2(30));

		name_rec1	name_type1;

		name_rec2	name_type2;

BEGIN

		name_rec1.first_name	:=	‘John’;

		name_rec1.last_name		:=	‘Smith’;

		name_rec2	:=	name_rec1;	—	illegal	assignment

END;

In	this	example,	both	records	have	the	same	structure,	but	each	record	is	of	a	different
type.	As	a	result,	these	records	are	not	compatible	with	each	other	on	the	record	level.	In
other	words,	an	aggregate	assignment	statement
Click	here	to	view	code	image

name_rec2	:=	name_rec1;	—	illegal	assignment

will	cause	an	error:
Click	here	to	view	code	image

ORA-06550:	line	15,	column	17:

PLS-00382:	expression	is	of	wrong	type

ORA-06550:	line	15,	column	4:

PL/SQL:	Statement	ignored

To	assign	name_rec1	to	name_rec2,	you	can	assign	each	field	of	name_rec1	to
the	corresponding	field	of	name_rec2,	or	you	can	declare	name_rec2	so	that	it	has	the
same	data	type	as	name_rec1	(changes	are	shown	in	bold).

For	Example		ch16_5b.sql
Click	here	to	view	code	image

DECLARE

		TYPE	name_type1	IS	RECORD

				(first_name	VARCHAR2(15),

					last_name		VARCHAR2(30));

		name_rec1	name_type1;

		name_rec2	name_type1;

BEGIN

		name_rec1.first_name	:=	‘John’;

		name_rec1.last_name		:=	‘Smith’;

		name_rec2	:=	name_rec1;	—	no	longer	illegal	assignment

END;

The	assignment	restriction	just	mentioned	applies	to	user-defined	records.	In	other
words,	you	can	assign	a	table-based	or	cursor-based	record	to	a	user-defined	record	as
long	as	they	have	the	same	structure.	Consider	the	following	example:

For	Example		ch16_6a.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	course_cur	IS

				SELECT	*

						FROM	course

					WHERE	rownum	<	2;

		TYPE	course_type	IS	RECORD

				(course_no					NUMBER(38)

				,description			VARCHAR2(50)

				,cost										NUMBER(9,2)

				,prerequisite		NUMBER(8)

				,created_by				VARCHAR2(30)

				,created_date		DATE

				,modified_by			VARCHAR2(30)

				,modified_date	DATE);

		course_rec1	course%ROWTYPE;					—	table-based	record

		course_rec2	course_cur%ROWTYPE;	—	cursor-based	record

		course_rec3	course_type;								—	user-defined	record

BEGIN

		—	Populate	table-based	record

		SELECT	*

				INTO	course_rec1

				FROM	course

			WHERE	course_no	=	10;

		—	Populate	cursor-based	record

		OPEN	course_cur;

		LOOP

				FETCH	course_cur	INTO	course_rec2;

				EXIT	WHEN	course_cur%NOTFOUND;

		END	LOOP;

		—	Assign	COURSE_REC2	to	COURSE_REC1	and	COURSE_REC3

		course_rec1	:=	course_rec2;

		course_rec3	:=	course_rec2;

		DBMS_OUTPUT.PUT_LINE	(course_rec1.course_no||’	-

‘||course_rec1.description);

		DBMS_OUTPUT.PUT_LINE	(course_rec2.course_no||’	-

‘||course_rec2.description);

		DBMS_OUTPUT.PUT_LINE	(course_rec3.course_no||’	-

‘||course_rec3.description);

END;

In	this	example,	each	record	is	of	a	different	type;	however,	they	are	compatible	with
one	another	because	all	of	the	records	have	the	same	structure.	As	a	result,	this	example
does	not	cause	any	syntax	errors	and	produces	the	following	output:

10	-	Technology	Concepts

10	-	Technology	Concepts

10	-	Technology	Concepts

Lab	16.2:	Nested	Records

After	this	lab,	you	will	be	able	to

	Use	Nested	Records

As	mentioned	in	the	introduction	to	this	chapter,	PL/SQL	allows	you	to	define	nested
records—that	is,	records	that	contain	other	records	and	collections.	The	record	that
contains	a	nested	record	or	collection	is	called	an	enclosing	record.

Consider	the	code	fragment	in	Listing	16.2.

Listing	16.2	Declaring	a	Nested	Record
DECLARE

		TYPE	name_type	IS	RECORD

				(first_name	VARCHAR2(15),

					last_name		VARCHAR2(30));

		TYPE	person_type	IS

				(name			name_type,

					street	VARCHAR2(50),

					city			VARCHAR2(25),

					state		VARCHAR2(2),

					zip				VARCHAR2(5));

		person_rec	person_type;

This	code	fragment	contains	two	user-defined	record	types.	The	second	user-defined
record	type,	person_type,	is	a	nested	record	type	because	its	field	name	is	a	record	of
the	name_type	type	(highlighted	in	bold).

Next,	consider	the	complete	version	of	the	script	based	on	the	declaration	of	the	nested
record	in	Listing	16.2.	References	to	the	nested	record	are	shown	in	bold.

For	Example		ch16_7a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	name_type	IS	RECORD

				(first_name	VARCHAR2(15),

					last_name		VARCHAR2(30));

		TYPE	person_type	IS	RECORD

				(name			name_type,

					street	VARCHAR2(50),

					city			VARCHAR2(25),

					state		VARCHAR2(2),

					zip				VARCHAR2(5));

		person_rec	person_type;

BEGIN

		SELECT	first_name,	last_name,	street_address,	city,	state,	zip

				INTO	person_rec.name.first_name,	person_rec.name.last_name,

									person_rec.street,	person_rec.city,	person_rec.state,

									person_rec.zip

				FROM	student

				JOIN	zipcode	USING	(zip)

			WHERE	rownum	<	2;

		DBMS_OUTPUT.PUT_LINE	(‘Name:			’||

					person_rec.name.first_name||‘	‘||person_rec.name.last_name);

		DBMS_OUTPUT.PUT_LINE	(‘Street:	‘||person_rec.street);

		DBMS_OUTPUT.PUT_LINE	(‘City:			’||person_rec.city);

		DBMS_OUTPUT.PUT_LINE	(‘State:		’||person_rec.state);

		DBMS_OUTPUT.PUT_LINE	(‘Zip:				’||person_rec.zip);

END;

In	this	example,	the	person_rec	record	is	a	user-defined	nested	record.	To	reference
its	field	name,	which	is	a	record	with	two	fields,	you	use	the	syntax	shown	in	Listing
16.3.	The	parentheses	are	included	in	this	listing	solely	for	readability	purposes.

Listing	16.3	Referencing	Individual	Fields	of	a	Nested	Record
Click	here	to	view	code	image

enclosing_record.(nested_record	or	nested_collection).field_name

In	this	case,	person_rec	is	the	enclosing	record	because	it	contains	the	name	record	as
one	of	its	fields.	In	other	words,	the	name	record	is	nested	in	the	person_rec	record.

This	example	produces	the	following	output:
Name:				George	Kocka

Street:		24	Beaufield	St.

City:				Dorchester

State:			MA

Zip:					02124

A	nested	record	may	also	contain	a	collection	as	one	of	its	fields.	In	the	following
example,	given	a	value	of	a	ZIP	code,	the	names	of	the	students	residing	in	that	ZIP	code
area	are	displayed	on	the	screen.

For	Example		ch16_8a.sql

Click	here	to	view	code	image

DECLARE

		TYPE	last_name_type	IS	TABLE	OF	student.last_name%TYPE

				INDEX	BY	PLS_INTEGER;

		TYPE	zip_info_type	IS	RECORD

				(zip						VARCHAR2(5),

				last_name_tab	last_name_type);

		CURSOR	name_cur	(p_zip	VARCHAR2)	IS

				SELECT	last_name

						FROM	student

					WHERE	zip	=	p_zip;

		zip_info_rec	zip_info_type;

		v_zip								VARCHAR2(5)	:=	‘&sv_zip’;

		v_index						PLS_INTEGER	:=	0;

BEGIN

		zip_info_rec.zip	:=	v_zip;

		DBMS_OUTPUT.PUT_LINE	(‘ZIP:	‘||zip_info_rec.zip);

		FOR	name_rec	IN	name_cur	(v_zip)

		LOOP

				v_index	:=	v_index	+	1;

				zip_info_rec.last_name_tab(v_index)	:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE

						(‘Names(‘||v_index||’):	‘||zip_info_rec.last_name_tab(v_index));

		END	LOOP;

END;

The	declaration	section	of	this	example	contains	declarations	of	the	associative	array
type,	last_name_type;	record	type,	zip_info_type;	and	nested	user-defined
record,	zip_info_rec.	The	field,	last_name_tab,	of	the	zip_info_rec	is	an
associative	array	that	is	populated	with	the	help	of	the	cursor,	name_cur.	In	addition,	the
declaration	portion	contains	two	variables,	v_zip	and	v_index.	The	variable	v_zip	is
used	to	store	the	incoming	value	of	the	ZIP	code	provided	at	run	time.	The	variable
v_index	is	used	to	populate	the	associative	array,	last_name_tab.	The	executable
portion	of	the	script	assigns	values	to	the	individual	record	fields,	zip	and
last_name_tab.	The	last_name_tab	is	an	associative	array,	which	is	populated
via	the	cursor	FOR	loop.

When	the	value	of	11368	is	provided	for	the	ZIP	code	at	run	time,	this	script	produces
the	following	output:

ZIP:	11368

Names(1):	Lasseter

Names(2):	Miller

Names(3):	Boyd

Names(4):	Griffen

Names(5):	Hutheesing

Names(6):	Chatman

Lab	16.3:	Collections	of	Records

After	this	lab,	you	will	be	able	to

	Use	Collections	of	Records

In	Lab	16.2,	you	saw	an	example	of	a	nested	record	in	which	one	of	the	record	fields	was
defined	as	an	associative	array.	PL/SQL	also	gives	you	the	ability	to	define	a	collection	of
records	(for	example,	an	associative	array	where	the	element	type	is	a	cursor-based
record).	The	following	example	illustrates	this	usage.

For	Example		ch16_9a.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	name_cur	IS

				SELECT	first_name,	last_name

						FROM	student

					WHERE	ROWNUM	<=	4;

		TYPE	name_type	IS	TABLE	OF	name_cur%ROWTYPE

				INDEX	BY	PLS_INTEGER;

		name_tab	name_type;

		v_index		INTEGER	:=	0;

BEGIN

		FOR	name_rec	IN	name_cur

		LOOP

				v_index	:=	v_index	+	1;

				name_tab(v_index).first_name	:=	name_rec.first_name;

				name_tab(v_index).last_name		:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE(‘First	Name(‘||v_index	||’):	‘||

						name_tab(v_index).first_name);

				DBMS_OUTPUT.PUT_LINE(‘Last	Name(‘||v_index	||’):	‘||

						name_tab(v_index).last_name);

		END	LOOP;

END;

The	declaration	section	of	this	example	contains	a	definition	of	the	name_cur	cursor,
which	returns	the	first	and	last	names	of	four	students.	In	addition,	it	defines	an	associative
array	type.	The	element	type	of	the	associative	array	is	a	cursor-based	record	defined	as
%ROWTYPE.	In	addition,	this	script	defines	an	associative	array	variable	and	the	index
variable	that	is	used	later	to	reference	individual	rows	of	the	associative	array.

The	executable	section	of	the	example	populates	the	associative	array	and	displays	its
records	on	screen.	The	notation	used	in	the	preceding	example	to	reference	individual
elements	of	the	array	is	shown	in	Listing	16.4.

Listing	16.4	Referencing	a	Collection	of	Records
Click	here	to	view	code	image

collection_name(index).record_field_name1

collection_name(index).record_field_name2

…

collection_name(index).record_field_nameN

To	reference	each	row	of	the	array,	you	use	the	index	variable	just	as	in	all	of	the
previous	examples	that	employed	collections.	However,	because	each	row	of	this
associative	array	is	a	record,	you	must	also	reference	individual	fields	of	the	underlying
record.

This	example	produces	the	following	output:
First	Name(1):	George

Last	Name(1):	Kocka

First	Name(2):	Janet

Last	Name(2):	Jung

First	Name(3):	Kathleen

Last	Name(3):	Mulroy

First	Name(4):	Joel

Last	Name(4):	Brendler

Next,	consider	a	modified	version	of	the	preceding	example.	In	this	version,	the
collection	type	has	been	changed	from	an	associative	array	to	a	nested	table	(all	changes
are	shown	in	bold).

For	Example		ch16_9b.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	name_cur	IS

				SELECT	first_name,	last_name

						FROM	student

					WHERE	ROWNUM	<=	4;

		TYPE	name_type	IS	TABLE	OF	name_cur%ROWTYPE;

		name_tab	name_type	:=	name_type();

		v_index	INTEGER	:=	0;

BEGIN

		FOR	name_rec	IN	name_cur

		LOOP

				v_index	:=	v_index	+	1;

				name_tab.EXTEND;

				name_tab(v_index).first_name	:=	name_rec.first_name;

				name_tab(v_index).last_name	:=	name_rec.last_name;

				DBMS_OUTPUT.PUT_LINE(‘First	Name(‘||v_index||’):	‘||

						name_tab(v_index).first_name);

				DBMS_OUTPUT.PUT_LINE(‘Last	Name(‘||v_index||’):	‘||

						name_tab(v_index).last_name);

		END	LOOP;

END;

The	only	differences	in	regard	to	the	previous	version	of	the	script	are	the	collection
type	declaration	and	methods	required	for	the	collection	initialization.	All	references	to	the
record	and	its	individual	fields	remain	unchanged.	This	version	of	the	script	produces	the
same	output	as	the	earlier	version:

First	Name(1):	George

Last	Name(1):	Kocka

First	Name(2):	Janet

Last	Name(2):	Jung

First	Name(3):	Kathleen

Last	Name(3):	Mulroy

First	Name(4):	Joel

Last	Name(4):	Brendler

So	far,	you	have	seen	examples	where	a	collection	of	records	was	defined	on	the	cursor-
based	record	type.	Next,	consider	an	example	where	a	collection	of	records	is	defined	on
the	user-defined	record	type.

For	Example		ch16_10a.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	enroll_cur	IS

				SELECT	first_name,	last_name,	COUNT(*)	total

						FROM	student

						JOIN	enrollment	USING	(student_id)

				GROUP	BY	first_name,	last_name;

		TYPE	enroll_rec_type	IS	RECORD

				(first_name		VARCHAR2(15),

					last_name			VARCHAR2(30),

					enrollments	INTEGER);

		TYPE	enroll_array_type	IS	TABLE	OF	enroll_rec_type

				INDEX	BY	PLS_INTEGER;

		enroll_tab	enroll_array_type;

		v_index			INTEGER	:=	0;

BEGIN

		FOR	enroll_rec	IN	enroll_cur

		LOOP

				v_index	:=	v_index	+	1;

				enroll_tab(v_index).first_name		:=	enroll_rec.first_name;

				enroll_tab(v_index).last_name			:=	enroll_rec.last_name;

				enroll_tab(v_index).enrollments	:=	enroll_rec.total;

				IF	v_index	<=	4

				THEN

						DBMS_OUTPUT.PUT_LINE(‘First	Name(‘||v_index||’):	‘||

								enroll_tab(v_index).first_name);

						DBMS_OUTPUT.PUT_LINE(‘Last	Name(‘||v_index||’):	‘||

								enroll_tab(v_index).last_name);

						DBMS_OUTPUT.PUT_LINE(‘Enrollments(‘||v_index||’):	‘||

								enroll_tab(v_index).enrollments);

						DBMS_OUTPUT.PUT_LINE	(‘––––––—’);

				END	IF;

		END	LOOP;

END;

The	declaration	section	of	the	script	contains	a	user-defined	record	type,
enroll_rec_type,	which	is	subsequently	used	in	the	declaration	of	the	associative
array	type,	enroll_array_type.	Finally,	the	associative	array,	enroll_tab,	is
declared	based	on	the	enroll_array_type.

In	the	executable	portion	of	the	script,	the	associative	array,	enroll_tab,	is

populated	via	the	cursor	FOR	loop	and	the	first	four	records	of	the	associative	array	are
displayed	on	the	screen.
	When	run,	this	script	produces	the	following	output:

First	Name(1):	Judy

Last	Name(1):	Sethi

Enrollments(1):	1

––––––—

First	Name(2):	Larry

Last	Name(2):	Walter

Enrollments(2):	2

––––––—

First	Name(3):	Winsome

Last	Name(3):	Laporte

Enrollments(3):	2

––––––—

First	Name(4):	Hiedi

Last	Name(4):	Lopez

Enrollments(4):	1

––––––—

Summary
In	this	chapter,	you	learned	about	the	different	types	of	records	supported	in	PL/SQL	and
saw	how	to	manipulate	individual	record	elements.	You	have	also	learned	about	record
compatibility	and	explored	how	it	affects	your	ability	to	assign	or	compare	records	to	each
other.	In	addition,	you	discovered	how	different	record	types	may	be	nested	inside	one
another	and	learned	how	to	define	and	manipulate	a	record	that	contains	a	collection
element.	Finally,	you	learned	how	to	define	and	handle	collections	of	records.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

17.	Native	Dynamic	SQL

In	this	chapter,	you	will	learn	about

	EXECUTE	IMMEDIATE	Statements

	OPEN-FOR,	FETCH,	and	CLOSE	Statements

Generally,	PL/SQL	applications	perform	a	specific	task	and	manipulate	a	static	set	of
tables.	For	example,	a	stored	procedure	might	accept	a	student	ID	and	return	the	student’s
first	and	last	names.	In	such	a	procedure,	a	SELECT	statement	is	known	in	advance	and	is
compiled	as	part	of	the	procedure.	Such	SELECT	statements	are	called	static	because	they
do	not	change	from	execution	to	execution.

Now,	consider	a	different	type	of	PL/SQL	application	where	SQL	statements	are	built
on	the	fly,	based	on	a	set	of	parameters	specified	at	run	time.	For	example,	an	application
might	need	to	build	various	reports	based	on	SQL	statements	where	the	table	and	column
names	are	not	known	in	advance	or	the	sorting	and	grouping	of	data	are	specified	by	the
user	requesting	a	report.	Similarly,	another	application	might	need	to	create	or	drop	tables
or	other	database	objects	based	on	the	actions	specified	by	a	user	at	run	time.	Because
these	SQL	statements	are	generated	on	the	fly	and	might	change	from	time	to	time,	they
are	called	dynamic.

PL/SQL	has	a	feature	called	native	dynamic	SQL	(“dynamic	SQL”	for	short)	that	helps
you	build	applications	similar	to	those	described	previously.	The	use	of	dynamic	SQL
makes	such	applications	flexible,	versatile,	and	concise	because	it	eliminates	the	need	for
complicated	programming	approaches.	Native	dynamic	SQL	is	more	convenient	to	use
than	the	Oracle-supplied	package	DBMS_SQL,	which	has	similar	functionality.	In	this
chapter	you	will	learn	how	to	create	and	use	dynamic	SQL.

Lab	17.1:	EXECUTE	IMMEDIATE	Statements

After	this	lab,	you	will	be	able	to

	Use	the	EXECUTE	IMMEDIATE	Statement

	Avoid	ORA	Errors	When	Using	EXECUTE	IMMEDIATE	Statements

Generally,	dynamic	SQL	statements	are	built	by	your	program	and	stored	as	character
strings	based	on	the	parameters	specified	at	run	time.	These	strings	must	contain	valid
SQL	statements	or	PL/SQL	code.	Consider	the	following	example	of	a	dynamic	SQL
statement:
Click	here	to	view	code	image

‘SELECT	first_name,	last_name	FROM	student

WHERE	student_id	=	:student_id’

This	SELECT	statement	returns	a	student’s	first	and	last	names	for	a	given	student	ID.	The

value	of	the	student	ID	is	not	known	in	advance	and	is	specified	with	the	help	of	a	bind
argument,	:student_id.	The	bind	argument	acts	as	a	placeholder	for	an	undeclared
identifier,	and	its	name	must	be	prefixed	by	a	colon.	As	a	result,	PL/SQL	does	not
differentiate	between	the	following	statements:
Click	here	to	view	code	image

‘SELECT	first_name,	last_name

	FROM	student	WHERE

	student_id	=	:student_id’

‘SELECT	first_name,	last_name

FROM	student	WHERE	student_id	=	:id’

To	process	dynamic	SQL	statements,	you	use	EXECUTE	IMMEDIATE	or	OPEN-FOR,
FETCH,	and	CLOSE	statements.	EXECUTE	IMMEDIATE	is	used	for	a	single-row
SELECT	statement,	all	DML	statements,	and	DDL	statements,	whereas	OPEN-FOR,
FETCH,	and	CLOSE	statements	are	used	for	multirow	SELECT	statements	and	reference
cursors.

Did	You	Know?

To	improve	performance	of	dynamic	SQL	statements,	you	can	also	use	BULK
EXECUTE	IMMEDIATE,	BULK	FETCH,	FORALL,	and	COLLECT	INTO
statements.	However,	these	statements	are	outside	the	scope	of	this	book	and
are	not	covered	here.	You	can	find	detailed	explanations	and	examples	of
their	usage	in	Oracle’s	online	help.

Using	the	EXECUTE	IMMEDIATE	Statement
The	EXECUTE	IMMEDIATE	statement	parses	a	dynamic	statement	or	a	PL/SQL	block
for	immediate	execution	and	has	the	structure	shown	here	(the	reserved	words	and	phrases
surrounded	by	brackets	are	optional):
Click	here	to	view	code	image

EXECUTE	IMMEDIATE	dynamic_SQL_string

	[INTO	defined_variable1,	defined_variable2,	…]

	[USING	[IN	|	OUT	|	IN	OUT]	bind_argument1,	bind_argument2,

	…][{RETURNING	|	RETURN}	field1,	field2,

…	INTO	bind_argument1,	bind_argument2,	…]

The	dynamic_SQL_string	is	a	string	that	contains	a	valid	SQL	statement	or	a
PL/SQL	block.	The	INTO	clause	contains	the	list	of	predefined	variables	that	hold	values
returned	by	the	SELECT	statement.	This	clause	is	used	when	a	dynamic	SQL	statement
returns	a	single	row,	similar	to	a	static	SELECT	INTO	statement.	Next,	the	USING	clause
contains	a	list	of	bind	arguments	whose	values	are	passed	to	the	dynamic	SQL	statement
or	PL/SQL	block.	The	IN,	OUT,	and	IN	OUT	options	are	modes	for	bind	arguments.	If	no
mode	is	specified,	all	bind	arguments	listed	in	the	USING	clause	default	to	the	IN	mode.
Finally,	the	RETURNING	INTO	or	RETURN	clause	contains	a	list	of	bind	arguments	that
store	values	returned	by	the	dynamic	SQL	statement	or	PL/SQL	block.	Similar	to	the
USING	clause,	the	RETURNING	INTO	clause	may	also	contain	various	argument	modes;
however,	if	no	mode	is	specified,	all	bind	arguments	default	to	the	OUT	mode.

Did	You	Know?

When	an	EXECUTE	IMMEDIATE	statement	contains	both	USING	and
RETURNING	INTO	clauses,	the	USING	clause	may	specify	only	IN
arguments.

The	following	script	contains	several	examples	of	dynamic	SQL.

For	Example
Click	here	to	view	code	image

DECLARE

		sql_stmt	VARCHAR2(100);

		plsql_block	VARCHAR2(300);

		v_zip	VARCHAR2(5)	:=	‘11106’;

		v_total_students	NUMBER;

		v_new_zip	VARCHAR2(5);

		v_student_id	NUMBER	:=	151;

BEGIN

		—	Create	table	MY_STUDENT

		sql_stmt	:=	‘CREATE	TABLE	my_student	‘||

														‘AS	SELECT	*	FROM	student	WHERE	zip	=	‘||v_zip;

		EXECUTE	IMMEDIATE	sql_stmt;

		—	Select	total	number	of	records	from	MY_STUDENT	table

		—	and	display	results	on	the	screen

		EXECUTE	IMMEDIATE	‘SELECT	COUNT(*)	FROM	my_student’

		INTO	v_total_students;

		DBMS_OUTPUT.PUT_LINE	(‘Students	added:	‘||v_total_students);

		—	Select	current	date	and	display	it	on	the	screen

		plsql_block	:=	‘DECLARE	‘																																									||

																	’		v_date	DATE;	‘																																		||

																	‘BEGIN	‘																																											||

																	’		SELECT	SYSDATE	INTO	v_date	FROM	DUAL;	‘									||

																	’		DBMS_OUTPUT.PUT_LINE	(TO_CHAR(v_date,

																																																”DD-MON-YYYY”));’	||

																	‘END;’;

		EXECUTE	IMMEDIATE	plsql_block;

		—	Update	record	in	MY_STUDENT	table

		sql_stmt	:=	‘UPDATE	my_student	SET	zip	=	11105	WHERE	student_id	=

																:1	‘||

														‘RETURNING	zip	INTO	:2’;

		EXECUTE	IMMEDIATE	sql_stmt	USING	v_student_id	RETURNING	INTO

										v_new_zip;

		DBMS_OUTPUT.PUT_LINE	(‘New	zip	code:	‘||v_new_zip);

END;

First,	this	script	creates	the	table	MY_STUDENT	and	populates	it	with	records	for	a
specified	value	of	the	ZIP	code.	Here,	the	variable	v_zip	is	concatenated	with	the
CREATE	statement	instead	of	being	passed	in	as	a	bind	argument.	This	point	is	illustrated
in	the	next	example.

Second,	the	script	selects	the	total	number	of	students	added	to	the	MY_STUDENT	table
and	displays	it	on	the	screen.	The	INTO	option	is	used	with	the	EXECUTE	IMMEDIATE

statement	because	the	SELECT	statement	returns	a	single	row.

Third,	the	script	includes	a	simple	PL/SQL	block	that	selects	the	current	date	and
displays	it	on	the	screen.	Because	the	PL/SQL	block	does	not	contain	any	bind	arguments,
the	EXECUTE	IMMEDIATE	statement	is	used	in	its	simplest	form.

Finally,	the	script	updates	the	MY_STUDENT	table	for	a	given	student	ID	and	returns	a
new	ZIP	code	value	via	the	RETURNING	statement.

Thus,	this	EXECUTE	IMMEDIATE	command	contains	both	USING	and	RETURNING
INTO	options.	The	USING	option	allows	you	to	pass	a	value	for	the	student	ID	to	the
UPDATE	statement	at	run	time,	and	the	RETURNING	INTO	option	allows	you	to	pass	a
new	ZIP	code	value	from	the	UPDATE	statement	into	the	program.

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

Students	added:	4

22-JUN-2003

New	zip	code:	11105

PL/SQL	procedure	successfully	completed.

How	to	Avoid	Common	ORA	Errors	When	Using	EXECUTE
IMMEDIATE

Next,	consider	the	simplified	yet	incorrect	version	of	the	preceding	example.	Changes	are
shown	in	bold.

For	Example
Click	here	to	view	code	image

DECLARE

		sql_stmt	VARCHAR2(100);

		v_zip	VARCHAR2(5)	:=	‘11106’;

		v_total_students	NUMBER;

BEGIN

		—	Drop	table	MY_STUDENT

		EXECUTE	IMMEDIATE	‘DROP	TABLE	my_student’;

		—	Create	table	MY_STUDENT

		sql_stmt	:=	‘CREATE	TABLE	my_student	‘||

														‘AS	SELECT	*	FROM	student	‘||

															‘WHERE	zip	=	:zip’;

		EXECUTE	IMMEDIATE	sql_stmt	USING	v_zip;

		—	Select	total	number	of	records	from	MY_STUDENT	table

		—	and	display	results	on	the	screen

		EXECUTE	IMMEDIATE	‘SELECT	COUNT(*)	FROM	my_student’

		INTO	v_total_students;

		DBMS_OUTPUT.PUT_LINE	(‘Students	added:	‘||	v_total_students);

END;

First,	this	script	drops	the	table	MY_STUDENT	created	in	the	previous	version	of	the
example.	Next,	it	recreates	the	MY_STUDENT	table,	but	in	this	case	uses	a	bind	argument

to	pass	a	value	for	the	ZIP	code	to	the	CREATE	statement	at	run	time.

When	run,	this	example	produces	the	following	error:
Click	here	to	view	code	image

DECLARE

*

ERROR	at	line	1:

ORA-01027:	bind	variables	not	allowed	for	data	definition	operations

ORA-06512:	at	line	12

By	the	Way

A	CREATE	TABLE	statement	is	a	data	definition	statement.	As	a	result,	it
cannot	accept	any	bind	arguments.

Next,	consider	another	simplified	version	of	the	same	example	that	also	causes	a	syntax
error.	In	this	version,	the	table	name	is	passed	as	a	bind	argument	to	the	SELECT
statement.	Changes	are	shown	in	bold.

For	Example
Click	here	to	view	code	image

DECLARE

		sql_stmt		VARCHAR2(100);

		v_zip		VARCHAR2(5)	:=	‘11106’;

		v_total_students	NUMBER;

BEGIN

		—	Create	table	MY_STUDENT

		sql_stmt	:=	‘CREATE	TABLE	my_student	‘||

														‘AS	SELECT	*	FROM	student	‘||	‘WHERE	zip	=’||	v_zip;

		EXECUTE	IMMEDIATE	sql_stmt;

		—	Select	total	number	of	records	from	MY_STUDENT	table

		—	and	display	results	on	the	screen

		EXECUTE	IMMEDIATE	‘SELECT	COUNT(*)	FROM	:my_table’

		INTO	v_total_students

		USING	‘my_student’;

		DBMS_OUTPUT.PUT_LINE	(‘Students	added:	‘||	v_total_students);

END;

When	run,	this	example	causes	the	following	error:
Click	here	to	view	code	image

DECLARE

*

ERROR	at	line	1:

ORA-00903:	invalid	table	name

ORA-06512:	at	line	13

This	example	causes	an	error	because	you	cannot	pass	names	of	schema	objects	to
dynamic	SQL	statements	as	bind	arguments.	To	provide	a	table	name	at	the	run	time,	you
need	to	concatenate	it	with	the	SELECT	statement,	as	shown	here:
Click	here	to	view	code	image

EXECUTE	IMMEDIATE	‘SELECT	COUNT(*)	FROM	‘||my_table

		INTO	v_total_students;

As	mentioned	earlier,	a	dynamic	SQL	string	can	contain	any	SQL	statement	or	PL/SQL
block.	However,	unlike	static	SQL	statements,	a	dynamic	SQL	statement	should	not	be
terminated	by	the	semicolon	(;).	Similarly,	a	dynamic	PL/SQL	block	should	not	be
terminated	by	the	forward	slash	(/).	Consider	a	different	version	of	the	same	example
where	the	SELECT	statement	is	terminated	by	the	semicolon.	Changes	are	shown	in	bold.
Note	that	if	you	have	created	the	MY_STUDENT	table	based	on	the	earlier	corrected
version	of	the	script,	you	need	to	drop	it	prior	to	running	the	following	script.	Otherwise,
the	error	message	generated	by	the	example	will	differ	from	the	error	message	shown
here.

For	Example
Click	here	to	view	code	image

DECLARE

		sql_stmt	VARCHAR2(100);

		v_zip	VARCHAR2(5)	:=	‘11106’;

		v_total_students	NUMBER;

BEGIN

		—	Create	table	MY_STUDENT

		sql_stmt	:=	‘CREATE	TABLE	my_student	‘||

														‘AS	SELECT	*	FROM	student	‘||	‘WHERE	zip	=	‘||v_zip;

		EXECUTE	IMMEDIATE	sql_stmt;

		—	Select	total	number	of	records	from	MY_STUDENT	table

		—	and	display	results	on	the	screen

		EXECUTE	IMMEDIATE	‘SELECT	COUNT(*)	FROM	my_student;’

		INTO	v_total_students;

		DBMS_OUTPUT.PUT_LINE	(‘Students	added:	‘||	v_total_students);

END;

When	run,	this	example	produces	the	following	error:
DECLARE

*

ERROR	at	line	1:

ORA-00903:	invalid	character

ORA-06512:	at	line	13

The	semicolon	added	to	the	SELECT	statement	is	treated	as	an	invalid	character	when
the	statement	is	created	dynamically.	A	somewhat	similar	error	is	generated	when	a
PL/SQL	block	is	terminated	by	a	forward	slash,	as	demonstrated	in	the	next	example.
Changes	are	shown	in	bold.

For	Example
Click	here	to	view	code	image

DECLARE

		plsql_block	VARCHAR2(300);

BEGIN

		—	Select	current	date	and	display	it	on	the	screen

		plsql_block	:=	‘DECLARE	‘																																					||

																	’		v_date	DATE;	‘																														||

																	‘BEGIN	‘																																							||

																	’		SELECT	SYSDATE	INTO	v_date	FROM	DUAL;	‘					||

																	’		DBMS_OUTPUT.PUT_LINE	(TO_CHAR(v_date,

																																										”DD-MON-YYYY”));’			||

																	‘END;’																																									||

																	’/’;

		EXECUTE	IMMEDIATE	plsql_block;

END;

When	run,	this	example	produces	the	following	error:
Click	here	to	view	code	image

DECLARE

*

ERROR	at	line	1:

ORA-06550:	line	1,	column	133:

PLS-00103:	Encountered	the	symbol	“/”	The	symbol	“/”	was	ignored.

ORA-06512:	at	line	12

Passing	NULLs

In	some	cases	you	may	need	to	pass	a	NULL	value	to	a	dynamic	SQL	statement	as	a	value
for	a	bind	argument.	For	example,	you	need	to	update	the	COURSE	table	so	that	the
PREREQUISITE	column	is	set	to	NULL.	You	can	accomplish	this	with	the	following
dynamic	SQL	and	the	EXECUTE	IMMEDIATE	statement.

For	Example
Click	here	to	view	code	image

DECLARE

		sql_stmt	VARCHAR2(100);

BEGIN

		sql_stmt	:=	‘UPDATE	course’||

														’			SET	prerequisite	=	:some_value’;

		EXECUTE	IMMEDIATE	sql_stmt

		USING	NULL;

END;

When	run,	this	script	causes	the	following	error:
Click	here	to	view	code	image

USING	NULL;

									*

ERROR	at	line	7:

ORA-06550:	line	7,	column	10:

PLS-00457:	expressions	have	to	be	of	SQL	types

ORA-06550:	line	6,	column	4:

PL/SQL:	Statement	ignored

This	error	is	generated	because	the	literal	NULL	in	the	USING	clause	is	not	recognized
as	one	of	the	SQL	types.	To	pass	a	NULL	value	to	the	dynamic	SQL	statement,	this
example	should	be	modified	as	follows	(changes	are	shown	in	bold):

For	Example
Click	here	to	view	code	image

DECLARE

		sql_stmt	VARCHAR2(100);

		v_null	VARCHAR2(1);

BEGIN

		sql_stmt	:=	‘UPDATE	course’||

														’			SET	prerequisite	=	:some_value’;

		EXECUTE	IMMEDIATE	sql_stmt

		USING	v_null;

END;

Putting	It	All	Together

To	correct	the	script,	you	add	an	initialized	variable	v_null	and	replace	the	literal	NULL
in	the	USING	clause	with	this	variable.	Because	the	variable	v_null	has	not	been
initialized,	its	value	remains	NULL,	and	it	is	passed	to	the	dynamic	UPDATE	statement	at
run	time.	As	a	result,	this	version	of	the	script	completes	without	any	errors.

For	Example		ch17_1.sql,	version	1.0
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		sql_stmt	VARCHAR2(200);

		v_student_id	NUMBER	:=	&sv_student_id;

		v_first_name	VARCHAR2(25);

		v_last_name	VARCHAR2(25);

BEGIN

		sql_stmt	:=	‘SELECT	first_name,	last_name’||

														’		FROM	student’														||

														’	WHERE	student_id	=	:1’;

		EXECUTE	IMMEDIATE	sql_stmt

		INTO	v_first_name,	v_last_name

		USING	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘First	Name:	‘||v_first_name);

		DBMS_OUTPUT.PUT_LINE	(‘Last	Name:		’||v_last_name);

END;

In	the	proceeding	example,	the	declaration	section	of	the	script	includes	a	declaration	of
the	string	that	contains	the	dynamic	SQL	statement	as	well	as	declarations	of	three
variables	to	hold	the	student’s	ID,	first	name,	and	last	name,	respectively.	The	executable
portion	of	the	script	contains	a	dynamic	SQL	statement	with	one	bind	argument	that	is
used	to	pass	the	value	of	the	student	ID	to	the	SELECT	statement	at	run	time.	The
dynamic	SQL	statement	is	executed	via	the	EXECUTE	IMMEDIATE	statement	with	two
options,	INTO	and	USING.	The	INTO	clause	contains	two	variables,	v_first_name
and	v_last_name.	These	variables	contain	results	returned	by	the	SELECT	statement.
The	USING	clause	contains	the	variable	v_student_id,	which	is	used	to	pass	a	value
to	the	SELECT	statement	at	run	time.	Finally,	two	DBMS_OUTPUT.PUT_LINE
statements	are	used	to	display	the	results	of	the	SELECT	statement	on	the	screen.

When	run,	this	script	will	prompt	the	user	for	a	value.	If,	for	example,	105	is	entered,	it
produces	the	following	output:
Click	here	to	view	code	image

Enter	value	for	sv_student_id:	105

old			3:				v_student_id	NUMBER	:=	&sv_student_id;

new			3:				v_student_id	NUMBER	:=	105;

First	Name:	Angel

Last	Name:		Moskowitz

PL/SQL	procedure	successfully	completed

In	the	next	example,	the	script	is	modified	so	that	the	student’s	address	(street,	city,
state,	and	ZIP	code)	are	displayed	on	the	screen	as	well.

For	Example		ch17_1.sql,	version	2.0
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		sql_stmt	VARCHAR2(200);

		v_student_id	NUMBER	:=	&sv_student_id;

		v_first_name	VARCHAR2(25);

		v_last_name	VARCHAR2(25);

		v_street	VARCHAR2(50);

		v_city	VARCHAR2(25);

		v_state	VARCHAR2(2);

		v_zip	VARCHAR2(5);

BEGIN

		sql_stmt	:=	‘SELECT	a.first_name,	a.last_name,	a.street_address’||

														‘						,b.city,	b.state,	b.zip’																					||

														’		FROM	student	a,	zipcode	b’																							||

														’	WHERE	a.zip	=	b.zip’																														||

														’			AND	student_id	=	:1’;

		EXECUTE	IMMEDIATE	sql_stmt

		INTO	v_first_name,	v_last_name,	v_street,	v_city,	v_state,	v_zip

		USING	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘First	Name:	‘||v_first_name);

		DBMS_OUTPUT.PUT_LINE	(‘Last	Name:		’||v_last_name);

		DBMS_OUTPUT.PUT_LINE	(‘Street:					‘||v_street);

		DBMS_OUTPUT.PUT_LINE	(‘City:							‘||v_city);

		DBMS_OUTPUT.PUT_LINE	(‘State:						‘||v_state);

		DBMS_OUTPUT.PUT_LINE	(‘Zip	Code:			‘||v_zip);

END;

In	this	script,	four	new	variables	are	declared:	v_street,	v_city,	v_state,	and
v_zip.	Next,	the	dynamic	SQL	statement	is	modified	so	that	it	can	return	the	student’s
address.	In	turn,	the	INTO	clause	is	modified	by	adding	the	new	variables	to	it.	Next,
DBMS_OUTPUT.PUT_LINE	statements	are	added	to	display	the	student’s	address	on	the
screen.

When	run,	this	script	produces	the	following	output:
Click	here	to	view	code	image

Enter	value	for	sv_student_id:	105

old			3:				v_student_id	NUMBER	:=	&sv_student_id;

new			3:				v_student_id	NUMBER	:=	105;

First	Name:	Angel

Last	Name:		Moskowitz

Street:					320	John	St.

City:							Ft.	Lee

State:						NJ

Zip	Code:			07024

PL/SQL	procedure	successfully	completed.

Note	that	the	order	of	variables	listed	in	the	INTO	clause	must	follow	the	order	of	the
columns	listed	in	the	SELECT	statement.	In	other	words,	if	the	INTO	clause	listed
variables	so	that	v_zip	and	v_state	were	misplaced	while	the	SELECT	statement

remains	unchanged,	the	scripts	would	generate	an	error.	The	following	example
demonstrates	this	case.

For	Example		ch17_1.sql,	version	3.0
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		sql_stmt	VARCHAR2(200);

		v_student_id	NUMBER	:=	&sv_student_id;

		v_first_name	VARCHAR2(25);

		v_last_name	VARCHAR2(25);

		v_street	VARCHAR2(50);

		v_city	VARCHAR2(25);

		v_state	VARCHAR2(2);

		v_zip	VARCHAR2(5);

BEGIN

		sql_stmt	:=	‘SELECT	a.first_name,	a.last_name,	a.street_address’||

														’						,b.city,b.state,	b.zip’																						||

														’		FROM	studenta,	zipcode	b’																								||

														’	WHERE	a.zip	=	b.zip’																														||

														’			AND	student_id	=	:1’;

		EXECUTE	IMMEDIATE	sql_stmt

		—	variables	v_state	and	v_zip	are	misplaced

		INTO	v_first_name,	v_last_name,	v_street,	v_city,	v_zip,	v_state

		USING	v_student_id;

		DBMS_OUTPUT.PUT_LINE	(‘First	Name:	‘||v_first_name);

		DBMS_OUTPUT.PUT_LINE	(‘Last	Name:		’||v_last_name);

		DBMS_OUTPUT.PUT_LINE	(‘Street:					’||v_street);

		DBMS_OUTPUT.PUT_LINE	(‘City:							’||v_city);

		DBMS_OUTPUT.PUT_LINE	(‘State:						’||v_state);

		DBMS_OUTPUT.PUT_LINE	(‘Zip	Code:			’||v_zip);

END;

When	run,	this	script	produces	the	following	error:
Click	here	to	view	code	image

Enter	value	for	sv_student_id:	105

old			3:				v_student_id	NUMBER	:=	&sv_student_id;

new			3:				v_student_id	NUMBER	:=	105;

DECLARE

*

ERROR	at	line	1:

ORA-06502:	PL/SQL:	numeric	or	value	error

ORA-06512:	at	line	16

This	error	is	generated	because	the	variable	v_state	can	hold	up	to	two	characters.
However,	in	this	example,	it	is	trying	to	store	a	ZIP	code	that	contains	five	characters.

Next,	this	script	is	modified	so	that	the	SELECT	statement	can	be	run	against	either	the
STUDENT	or	INSTRUCTOR	table.	In	other	words,	the	user	can	specify	the	table	name	to
be	used	in	the	SELECT	statement	at	run	time.	The	changes	for	this	version	are	highlighted
in	bold.

For	Example		ch17_1.sql,	version	4.0

Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		sql_stmt	VARCHAR2(200);

		v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

		v_id	NUMBER	:=	&sv_id;

		v_first_name	VARCHAR2(25);

		v_last_name	VARCHAR2(25);

		v_street	VARCHAR2(50);

		v_city	VARCHAR2(25);

		v_state	VARCHAR2(2);

		v_zip	VARCHAR2(5);

BEGIN

		sql_stmt	:=	‘SELECT	a.first_name,	a.last_name,	a.street_address’||

																					,b.city,	b.state,	b.zip’																					||

														’		FROM	‘||v_table_name||’	a,	zipcode	b’												||

														’	WHERE	a.zip	=	b.zip’																														||

														’			AND	‘||v_table_name||‘_id	=	:1’;

		EXECUTE	IMMEDIATE	sql_stmt

		-INTO	v_first_name,	v_last_name,	v_street,	v_city,	v_state,	v_zip

		USING	v_id;

		DBMS_OUTPUT.PUT_LINE	(‘First	Name:	‘||v_first_name);

		DBMS_OUTPUT.PUT_LINE	(‘Last	Name:		’||v_last_name);

		DBMS_OUTPUT.PUT_LINE	(‘Street:					’||v_street);

		DBMS_OUTPUT.PUT_LINE	(‘City:							’||v_city);

		DBMS_OUTPUT.PUT_LINE	(‘State:						’||v_state);

		DBMS_OUTPUT.PUT_LINE	(‘Zip	Code:			’||v_zip);

END;

The	declaration	portion	of	the	script	contains	a	new	variable,	v_table_name	that
holds	the	name	of	a	table	provided	at	run	time	by	the	user.	In	addition,	the	variable
v_student_id	has	been	replaced	by	the	variable	v_id	since	it	is	not	known	in
advance	which	table,	STUDENT	or	INSTRUCTOR,	will	be	accessed	at	run	time.

The	executable	portion	of	the	script	contains	a	modified	dynamic	SQL	statement.
Notice	that	the	statement	does	not	contain	any	information	specific	to	the	STUDENT	or
INSTRUCTOR	tables.	In	other	words,	the	dynamic	SQL	statement	used	by	the	previous
version	(ch17_1.sql	version	3.0)
Click	here	to	view	code	image

sql_stmt	:=	‘SELECT	a.first_name,	a.last_name,	a.street_address’||

												’						,b.city,	b.state,	b.zip’																					||

												’		FROM	student	a,	zipcode	b’																							||

												’	WHERE	a.zip	=	b.zip’																														||

												’			AND	student_id	=	:1’;

has	been	replaced	by
Click	here	to	view	code	image

sql_stmt	:=	‘SELECT	a.first_name,	a.last_name,	a.street_address’||

												’						,b.city,	b.state,	b.zip’																				||

												’		FROM	‘||v_table_name||’	a,	zipcode	b’												||

												’	WHERE	a.zip	=	b.zip’																														||

												’			AND	‘||v_table_name||‘_id	=	:1’;

The	table	name	(STUDENT)	has	been	replaced	by	the	variable	v_table_name	in	the

FROM	and	WHERE	clauses.

Did	You	Know?

In	the	last	two	versions	of	the	script,	you	have	used	generic	table	aliases,	a
and	b,	instead	of	s	and	z	or	i	and	z,	which	are	more	descriptive.	This
technique	allows	you	to	create	generic	SQL	statements	that	are	not	based	on	a
specific	table	because	you	do	not	always	know	which	table	is	appropriate	in
advance.

This	version	of	the	script	produces	the	following	output.	The	first	run	is	made	against
the	STUDENT	table.
Click	here	to	view	code	image

Enter	value	for	sv_table_name:	student

old			3:				v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

new			3:				v_table_name	VARCHAR2(20)	:=	‘student’;

Enter	value	for	sv_id:	105

old			4:				v_id	NUMBER	:=	&sv_id;

new			4:				v_id	NUMBER	:=	105;

First	Name:	Angel

Last	Name:		Moskowitz

Street:					320	John	St.

City:							Ft.	Lee

State:						NJ

Zip	Code:			07024

PL/SQL	procedure	successfully	completed.

The	second	run	is	against	the	INSTRUCTOR	table:
Click	here	to	view	code	image

Enter	value	for	sv_table_name:	instructor

old			3:				v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

new			3:				v_table_name	VARCHAR2(20)	:=	‘instructor’;

Enter	value	for	sv_id:	105

old			4:				v_id	NUMBER	:=	&sv_id;

new			4:				v_id	NUMBER	:=	105;

First	Name:	Anita

Last	Name:		Morris

Street:					34	Maiden	Lane

City:							New	York

State:						NY

Zip	Code:			10015

PL/SQL	procedure	successfully	completed.

Lab	17.2:	OPEN-FOR,	FETCH,	and	CLOSE	Statements

After	this	lab,	you	will	be	able	to

	Use	OPEN-FOR	statements

	Use	FETCH	statements

	Use	CLOSE	statements

The	OPEN-FOR,	FETCH,	and	CLOSE	statements	are	used	for	multirow	queries	or	cursors.
This	concept	is	very	similar	to	the	static	cursor	processing	that	you	encountered	in	Chapter
11.	Just	as	in	the	case	of	static	cursors,	first	you	associate	a	cursor	variable	with	a	query.
Next,	you	open	the	cursor	variable	so	that	it	points	to	the	first	row	of	the	result	set.	Next,
you	fetch	one	row	at	a	time	from	the	result	set.	Finally,	when	all	rows	have	been
processed,	you	close	the	cursor	(cursor	variable).

Opening	Cursor
In	the	case	of	a	dynamic	SQL,	the	OPEN-FOR	statement	has	an	optional	USING	clause
that	allows	you	to	pass	values	to	the	bind	arguments	at	run	time.	The	general	syntax	for	an
OPEN-FOR	statement	is	as	follows	(the	reserved	words	and	phrases	surrounded	by
brackets	are	optional):
Click	here	to	view	code	image

OPEN	cursor_variable	FOR	dynamic_SQL_string

[USING	bind_argument1,	bind_argument2,	…]

The	cursor_variable	is	a	variable	of	a	weak	REF	CURSOR	type,	and	the
dynamic_SQL_string	is	a	string	that	contains	a	multirow	query.

For	Example
Click	here	to	view	code	image

DECLARE

		TYPE	student_cur_type	IS	REF	CURSOR;

		student_cur	student_cur_type;

		v_zip	VARCHAR2(5)	:=	‘&sv_zip’;

		v_first_name	VARCHAR2(25);

		v_last_name	VARCHAR2(25);

BEGIN

		OPEN	student_cur	FOR

				‘SELECT	first_name,	last_name	FROM	student	‘||‘WHERE	zip	=	:1’

		USING	v_zip;

…

This	code	fragment	first	defines	a	weak	cursor	type,	student_cur_type.	Next,	it
defines	a	cursor	variable,	student_cur,	based	on	the	REF	CURSOR	type	specified	in
the	previous	step.	At	run	time,	the	student_cur	variable	is	associated	with	the
SELECT	statement	that	returns	the	first	and	last	names	of	students	for	a	given	value	of
zip.

Fetching	from	a	Cursor
As	mentioned	earlier,	the	FETCH	statement	returns	a	single	row	from	the	result	set	into	a
list	of	variables	defined	in	a	PL/SQL	block	and	moves	the	cursor	to	the	next	row.	If	a	loop
is	being	processed	and	there	are	no	more	rows	to	fetch,	the	EXIT	WHEN	statement
evaluates	to	TRUE,	and	control	of	the	execution	passes	outside	the	cursor	loop.	The
general	syntax	for	a	FETCH	statement	is	as	follows:
Click	here	to	view	code	image

FETCH	cursor_variable

INTO	defined_variable1,	defined_variable2,	…

EXIT	WHEN	cursor_variable%NOTFOUND;

Continuing	the	previous	example,	you	fetch	the	student’s	first	and	last	names	into
variables	specified	in	the	declaration	section	of	the	PL/SQL	block.	Next,	you	evaluate	if
there	are	more	records	to	process	via	an	EXIT	WHEN	statement.	As	long	as	there	are
more	records	to	process,	the	student’s	first	and	last	names	are	displayed	on	the	screen.
Once	the	last	row	is	fetched,	the	cursor	loop	terminates.	The	changes	necessary	for	these
steps	are	shown	in	bold.

For	Example
Click	here	to	view	code	image

DECLARE

		TYPE	student_cur_type	IS	REF	CURSOR;

		student_cur	student_cur_type;

		v_zip	VARCHAR2(5)	:=	‘&sv_zip’;

		v_first_name	VARCHAR2(25);

		v_last_name	VARCHAR2(25);

BEGIN

		OPEN	student_cur	FOR

				‘SELECT	first_name,	last_name	FROM	student	‘||‘WHERE	zip	=	:1’

		USING	v_zip;

		LOOP

				FETCH	student_cur	INTO	v_first_name,	v_last_name;

				EXIT	WHEN	student_cur%NOTFOUND;

				DBMS_OUTPUT.PUT_LINE	(‘First	Name:	‘||v_first_name);

				DBMS_OUTPUT.PUT_LINE	(‘Last	Name:		’||v_last_name);

		END	LOOP;

…

The	number	of	variables	listed	in	the	INTO	clause	must	correspond	to	the	number	of
columns	returned	by	the	cursor.	Furthermore,	the	variables	in	the	INTO	clause	must	be
type	compatible	with	the	cursor	columns.

Closing	a	Cursor
The	CLOSE	statement	disassociates	the	cursor	variable	with	the	multirow	query.	As	a
result,	after	the	CLOSE	statement	executes,	the	result	set	becomes	undefined.	The	general
syntax	for	a	CLOSE	statement	is	as	follows:

CLOSE	cursor_variable;

Now	consider	the	complete	version	of	the	example	shown	previously.	Changes	are
shown	in	bold.

For	Example
Click	here	to	view	code	image

DECLARE

		TYPE	student_cur_type	IS	REF	CURSOR;

		student_cur	student_cur_type;

		v_zip	VARCHAR2(5)	:=	‘&sv_zip’;

		v_first_name	VARCHAR2(25);

		v_last_name	VARCHAR2(25);

BEGIN

		OPEN	student_cur	FOR

				‘SELECT	first_name,	last_name	FROM	student	‘||‘WHERE	zip	=	:1’

		USING	v_zip;

		LOOP

				FETCH	student_cur	INTO	v_first_name,	v_last_name;

				EXIT	WHEN	student_cur%NOTFOUND;

				DBMS_OUTPUT.PUT_LINE	(‘First	Name:	‘||v_first_name);

				DBMS_OUTPUT.PUT_LINE	(‘Last	Name:		’||v_last_name);

		END	LOOP;

		CLOSE	student_cur;

EXCEPTION

		WHEN	OTHERS	THEN

				IF	student_cur%ISOPEN	THEN

						CLOSE	student_cur;

				END	IF;

				DBMS_OUTPUT.PUT_LINE	(‘ERROR:	‘||		SUBSTR(SQLERRM,	1,	200));

END;

The	IF	statement	in	the	exception-handling	section	evaluates	to	TRUE	if	an	exception
is	encountered	before	the	cursor	processing	is	completed.	In	such	a	case,	it	is	considered
good	practice	to	check	whether	a	cursor	is	still	open	and	close	it,	if	necessary,	so	that	all
resources	associated	with	the	cursor	will	be	freed	before	the	program	terminates.

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

Enter	value	for	sv_zip:	11236

old			5:				v_zip	VARCHAR2(5)	:=	‘&sv_zip’;

new			5:				v_zip	VARCHAR2(5)	:=	‘11236’;

First	Name:	Derrick

Last	Name:		Baltazar

First	Name:	Michael

Last	Name:		Lefbowitz

First	Name:	Bridget

Last	Name:		Hagel

PL/SQL	procedure	successfully	completed.

In	the	following	example,	pay	close	attention	to	the	use	of	spaces.

For	Example		ch17_2.sql,	version	1.0
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		TYPE	zip_cur_type	IS	REF	CURSOR;

		zip_cur	zip_cur_type;

		sql_stmt	VARCHAR2(500);

		v_zip	VARCHAR2(5);

		v_total	NUMBER;

		v_count	NUMBER;

BEGIN

		sql_stmt	:=	‘SELECT	zip,	COUNT(*)	total’||

														’		FROM	student	‘											||

														‘GROUP	BY	zip’;

		v_count	:=	0;

		OPEN	zip_cur	FOR	sql_stmt;

		LOOP

				FETCH	zip_cur	INTO	v_zip,	v_total;

				EXIT	WHEN	zip_cur%NOTFOUND;

				—	Limit	the	number	of	lines	printed	on	the

				—	screen	to	10

				v_count	:=	v_count	+	1;

				IF	v_count	<=	10	THEN

						DBMS_OUTPUT.PUT_LINE	(‘Zip	code:	‘||v_zip||

																														’	Total:	‘||v_total);

				END	IF;

		END	LOOP;

		CLOSE	zip_cur;

EXCEPTION

		WHEN	OTHERS	THEN

				IF	zip_cur%ISOPEN	THEN

						CLOSE	zip_cur;

				END	IF;

				DBMS_OUTPUT.PUT_LINE	(‘ERROR:	‘||		SUBSTR(SQLERRM,	1,	200));

END;

Consider	the	use	of	spaces	in	the	SQL	statements	generated	dynamically.	In	the
preceding	script,	the	string	that	holds	the	dynamic	SQL	statement	consists	of	three	strings
concatenated	together,	where	each	string	is	written	on	a	separate	line.
Click	here	to	view	code	image

sql_stmt	:=	‘SELECT	zip,	COUNT(*)	total’||

												’		FROM	student	‘											||

												‘GROUP	BY	zip’;

This	format	of	the	dynamic	SELECT	statement	is	very	similar	to	the	format	of	any
static	SELECT	statement	that	you	have	seen	throughout	this	book.	However,	there	is	a
subtle	difference.	In	one	instance,	extra	spaces	have	been	added	for	formatting	reasons.
For	example,	the	FROM	keyword	is	prefixed	by	two	spaces	so	that	it	is	aligned	with	the
SELECT	keyword.	Yet,	in	another	instance,	a	space	has	been	added	to	separate	out	a
reserved	phrase.	In	this	case,	a	space	has	been	added	after	the	STUDENT	table	to	separate
out	the	GROUP	BY	clause.	This	step	is	necessary	because	once	the	strings	are
concatenated,	the	resulting	SELECT	statement	looks	as	follows:
Click	here	to	view	code	image

SELECT	zip,	COUNT(*)	total		FROM	student	GROUP	BY	zip

If	no	space	is	added	after	the	STUDENT	table,	the	resulting	SELECT	statement
Click	here	to	view	code	image

SELECT	zip,	COUNT(*)	total		FROM	studentGROUP	BY	zip

causes	the	following	error:
Click	here	to	view	code	image

ERROR:	ORA-00933:	SQL	command	not	properly	ended

PL/SQL	procedure	successfully	completed.

In	the	declaration	portion	of	the	example	script,	a	weak	cursor	type	is	defined	as
zip_cur_type,	and	a	cursor	variable	zip_cur	of	the	zip_cur_type	type	is	also
defined.	Next,	a	string	variable	to	hold	a	dynamic	SQL	statement	is	defined	as	well	as	two
variables	v_zip	and	v_total,	which	hold	data	returned	by	the	cursor.	Finally,	a

counter	variable	is	defined	so	that	only	the	first	10	rows	returned	by	the	cursor	are
displayed	on	the	screen.

In	the	executable	portion	of	the	script,	a	dynamic	SQL	statement	is	generated,	which	is
then	associated	with	the	cursor	variable,	zip_cur.	The	cursor	is	opened.	Then,	for	each
row	returned	by	the	cursor,	the	values	of	a	ZIP	code	and	the	total	number	of	students
living	in	that	ZIP	code	area	are	populated	into	the	variables	v_zip	and	v_total,
respectively.	Next,	the	script	checks	whether	there	are	more	rows	to	fetch	from	the	cursor.
If	there	are	more	rows	to	process,	the	value	of	the	counter	variable	is	incremented	by	1.	As
long	as	the	value	of	the	counter	is	less	than	or	equal	to	10,	the	row	returned	by	the	cursor
is	displayed	on	the	screen.	If	there	are	no	more	rows	to	fetch,	the	cursor	is	closed.

The	exception-handling	section	of	the	script	checks	whether	the	cursor	is	open.	If	it	is,
the	script	closes	the	cursor	and	displays	an	error	message	on	the	screen	before	terminating.

When	run,	the	script	should	produce	output	similar	to	that	shown	here:
Click	here	to	view	code	image

Zip	code:	01247	Total:	1

Zip	code:	02124	Total:	1

Zip	code:	02155	Total:	1

Zip	code:	02189	Total:	1

Zip	code:	02563	Total:	1

Zip	code:	06483	Total:	1

Zip	code:	06605	Total:	1

Zip	code:	06798	Total:	1

Zip	code:	06820	Total:	3

Zip	code:	06830	Total:	3

PL/SQL	procedure	successfully	completed.

The	script	ch17_2.sql,	version	1.0,	from	the	previous	example	is	now	modified	so	that
the	SELECT	statement	can	be	run	against	either	the	STUDENT	or	INSTRUCTOR	table.	In
other	words,	the	user	can	specify	the	table	name	used	in	the	SELECT	statement	at	run
time.

For	Example		ch17_2.sql,	version	2.0
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		TYPE	zip_cur_type	IS	REF	CURSOR;

		zip_cur	zip_cur_type;

		v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

		sql_stmt	VARCHAR2(500);

		v_zip	VARCHAR2(5);

		v_total	NUMBER;

		v_count	NUMBER;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Totals	from	‘||v_table_name||

																								‘	table’);

		sql_stmt	:=	‘SELECT	zip,	COUNT(*)	total’||

														‘		FROM	‘||v_table_name||’	‘||

														‘GROUP	BY	zip’;

		v_count	:=	0;

		OPEN	zip_cur	FOR	sql_stmt;

		LOOP

				FETCH	zip_cur	INTO	v_zip,	v_total;

				EXIT	WHEN	zip_cur%NOTFOUND;

				—	Limit	the	number	of	lines	printed	on	the

				—	screen	to	10

				v_count	:=	v_count	+	1;

				IF	v_count	<=	10	THEN

						DBMS_OUTPUT.PUT_LINE	(‘Zip	code:	‘||v_zip||

																												‘	Total:	‘||v_total);

				END	IF;

		END	LOOP;

		CLOSE	zip_cur;

EXCEPTION

		WHEN	OTHERS	THEN

				IF	zip_cur%ISOPEN	THEN

						CLOSE	zip_cur;

				END	IF;

				DBMS_OUTPUT.PUT_LINE	(‘ERROR:	‘||		SUBSTR(SQLERRM,	1,	200));

END;

In	this	version	of	the	script,	the	variable	v_table_name	has	been	added	to	hold	the
name	of	a	table	provided	at	the	run	time.	A	DBMS_OUTPUT.PUT_LINE	has	been	added
to	display	a	message	indicating	the	table	from	which	the	total	numbers	are	coming.	The
dynamic	SQL	statement	was	also	modified	as	follows:
Click	here	to	view	code	image

sql_stmt	:=	‘SELECT	zip,	COUNT(*)	total’||

												’		FROM	‘||v_table_name||’	‘||

												‘GROUP	BY	zip’;

The	variable	v_table_name	has	been	inserted	in	place	of	the	actual	table	name
(STUDENT).	Note	that	a	space	is	concatenated	to	the	variable	v_table_name,	so	that
the	SELECT	statement	does	not	cause	any	errors.

When	run,	this	script	produces	the	following	output.	The	first	run	is	based	on	the
STUDENT	table.
Click	here	to	view	code	image

Enter	value	for	sv_table_name:	student

old			5:					v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

new			5:					v_table_name	VARCHAR2(20)	:=	‘student’;

Totals	from	student	table

Zip	code:	01247	Total:	1

Zip	code:	02124	Total:	1

Zip	code:	02155	Total:	1

Zip	code:	02189	Total:	1

Zip	code:	02563	Total:	1

Zip	code:	06483	Total:	1

Zip	code:	06605	Total:	1

Zip	code:	06798	Total:	1

Zip	code:	06820	Total:	3

Zip	code:	06830	Total:	3

PL/SQL	procedure	successfully	completed.

The	second	run	is	based	on	the	INSTRUCTOR	table.

Click	here	to	view	code	image

Enter	value	for	sv_table_name:	instructor

old			5:				v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

new			5:				v_table_name	VARCHAR2(20)	:=	‘instructor’;

Totals	from	instructor	table

Zip	code:	10005	Total:	1

Zip	code:	10015	Total:	3

Zip	code:	10025	Total:	4

Zip	code:	10035	Total:	1

PL/SQL	procedure	successfully	completed.

So	far,	you	have	seen	that	values	returned	by	the	dynamic	SQL	statements	are	stored	in
individual	variables	such	as	v_last_name	or	v_first_name.	In	such	cases,	you	list
variables	in	the	order	of	the	corresponding	columns	returned	by	the	SELECT	statement.
This	approach	becomes	somewhat	cumbersome	when	a	dynamic	SQL	statement	returns
more	than	a	few	columns.	As	a	result,	PL/SQL	allows	you	to	store	values	returned	by	the
dynamic	SELECT	statements	in	the	variables	of	the	record	type.

Consider	the	modified	version	of	the	script	used	in	this	lab.	In	this	version,	instead	of
creating	separate	variables,	a	user-defined	record	is	created.	This	record	is	then	used	to
fetch	data	from	the	cursor	and	display	it	on	the	screen.	Changes	are	shown	in	bold.

For	Example		ch17_2.sql,	version	3.0
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		TYPE	zip_cur_type	IS	REF	CURSOR;

		zip_cur	zip_cur_type;

		TYPE	zip_rec_type	IS	RECORD

				(zip	VARCHAR2(5),

					total	NUMBER);

		zip_rec	zip_rec_type;

		v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

		sql_stmt	VARCHAR2(500);

		v_count	NUMBER;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Totals	from	‘||v_table_name||

																								’	table’);

		sql_stmt	:=	‘SELECT	zip,	COUNT(*)	total’||

														‘		FROM	‘||v_table_name||’	‘||

														‘GROUP	BY	zip’;

		v_count	:=	0;

		OPEN	zip_cur	FOR	sql_stmt;

		LOOP

				FETCH	zip_cur	INTO	zip_rec;

				EXIT	WHEN	zip_cur%NOTFOUND;

				—	Limit	the	number	of	lines	printed	on	the

				—	screen	to	10

				v_count	:=	v_count	+	1;

				IF	v_count	<=	10	THEN

						DBMS_OUTPUT.PUT_LINE	(‘Zip	code:	‘||zip_rec.zip||

																													‘	Total:	‘||zip_rec.total);

				END	IF;

		END	LOOP;

		CLOSE	zip_cur;

EXCEPTION

		WHEN	OTHERS	THEN

		IF	zip_cur%ISOPEN	THEN

				CLOSE	zip_cur;

		END	IF;

		DBMS_OUTPUT.PUT_LINE	(‘ERROR:	‘||		SUBSTR(SQLERRM,	1,	200));

END;

When	version	3	of	this	script	is	run,	it	produces	the	following	results	for	the	STUDENT
table:
Click	here	to	view	code	image

Enter	value	for	sv_table_name:	student

old		10:				v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

new		10:				v_table_name	VARCHAR2(20)	:=	‘student’;

Totals	from	student	table

Zip	code:	01247	Total:	1

Zip	code:	02124	Total:	1

Zip	code:	02155	Total:	1

Zip	code:	02189	Total:	1

Zip	code:	02563	Total:	1

Zip	code:	06483	Total:	1

Zip	code:	06605	Total:	1

Zip	code:	06798	Total:	1

Zip	code:	06820	Total:	3

Zip	code:	06830	Total:	3

PL/SQL	procedure	successfully	completed.

The	same	script	produces	the	following	results	for	the	INSTRUCTOR	table:
Click	here	to	view	code	image

Enter	value	for	sv_table_name:	instructor

old		10:				v_table_name	VARCHAR2(20)	:=	‘&sv_table_name’;

new		10:				v_table_name	VARCHAR2(20)	:=	‘instructor’;

Totals	from	instructor	table

Zip	code:	10005	Total:	1

Zip	code:	10015	Total:	3

Zip	code:	10025	Total:	4

Zip	code:	10035	Total:	1

PL/SQL	procedure	successfully	completed.

Summary
In	this	chapter,	you	learned	how	to	build	native	dynamic	SQL	statements	in	PL/SQL;	such
statements	are	used	when	you	need	to	build	flexibility	into	your	code.	Dynamic	SQL
allows	for	varying	the	SQL	statements	that	are	executed	at	run	time,	thereby	allowing	for
various	elements	of	the	SQL	to	change,	such	as	the	table	and	the	columns.	The	first
method	covered	in	this	chapter	was	the	EXECUTE	IMMEDIATE	statement;	you	also	saw
how	to	avoid	various	Oracle	errors	when	using	this	method.	The	OPEN-FOR,	FETCH,	and
CLOSE	statements	were	then	explained	in	detail;	these	approaches	allow	for	multirow
queries.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

18.	Bulk	SQL

In	this	chapter,	you	will	learn	about

	FORALL	Statements

	The	BULK	COLLECT	Clause

	Binding	Collections	in	SQL	Statements

In	Chapter	1,	you	learned	that	the	PL/SQL	engine	sends	SQL	statements	to	the	SQL
engine,	which	then	returns	results	back	to	the	PL/SQL	engine.	The	communication
between	the	PL/SQL	and	SQL	engines	is	also	known	as	a	context	switch.	A	certain
performance	overhead	is	associated	with	these	context	switches.	However,	the	PL/SQL
language	has	a	number	of	features	that	can	minimize	the	performance	overhead,	which	are
collectively	known	as	bulk	SQL.	Generally,	if	a	SQL	statement	affects	four	or	more	rows,
bulk	SQL	may	improve	performance	significantly.	Bulk	SQL	supports	batch	processing	of
SQL	statements	and	their	results,	and	it	consists	of	two	features,	the	FORALL	statement
and	the	BULK	COLLECT	clause.

Starting	with	Oracle	12c,	support	for	collection	data	types	and	bulk	SQL	has	been
extended	to	dynamic	SQL.	As	a	consequence,	you	are	able	to	bind	collection	variables
when	using	an	EXECUTE	IMMEDIATE	statement	or	OPEN-FOR,	FETCH,	and	CLOSE
statements.	This	ability	is	covered	in	detail	in	Lab	18.3.

Lab	18.1:	FORALL	Statements

After	this	Lab,	you	will	be	able	to

	Use	FORALL	Statements

	Use	the	SAVE	EXCEPTIONS	Option

	Use	the	INDICES	OF	Option

	Use	the	VALUES	OF	Option

Consider	an	INSERT	statement	enclosed	by	a	numeric	FOR	loop	that	iterates	10	times,	as
shown	in	Listing	18.1.

Listing	18.1	INSERT	Statement	Enclosed	by	a	Numeric	FOR	Loop
FOR	i	IN	1..10

LOOP

		INSERT	INTO	table_name

		VALUES	(…);

END	LOOP;

This	INSERT	statement	will	be	sent	from	the	PL/SQL	engine	to	the	SQL	engine	10
times.	In	other	words,	10	context	switches	take	place.	If	the	numeric	FOR	loop	is	replaced
with	a	FORALL	statement,	however,	the	INSERT	statement	is	sent	only	once	from

PL/SQL	engine	to	the	SQL	engine,	yet	it	is	still	executed	10	times.	In	this	case,	there	is
only	one	context	switch	between	PL/SQL	and	SQL.

Using	FORALL	Statements
The	FORALL	statement	sends	INSERT,	UPDATE,	or	DELETE	statements	in	batches	from
the	PL/SQL	engine	to	the	SQL	engine	instead	of	one	statement	at	a	time.	It	has	the
structure	shown	in	Listing	18.2	(the	reserved	words	and	phrases	surrounded	by	brackets
are	optional).

Listing	18.2	FORALL	Statement	Syntax
Click	here	to	view	code	image

FORALL	loop_counter	IN	bounds_clause

		SQL_STATEMENT	[SAVE	EXCEPTIONS];

where	BOUNDS_CLAUSE	is	one	of	the	following:
Click	here	to	view	code	image

lower_limit..upper_limit

INDICES	OF	collection_name	BETWEEN	lower_limit..upper_limit

VALUES	OF	collection_name

The	FORALL	statement	has	an	implicitly	defined	loop	counter	variable	associated	with
it.	The	values	of	this	loop	counter	variable	and	the	number	of	loop	iterations	are	controlled
by	the	BOUNDS_CLAUSE,	which	has	three	forms.	The	first	form	specifies	lower	and
upper	limits	for	the	loop	counter;	this	syntax	is	very	similar	to	the	numeric	FOR	loop.	The
second	form,	INDICES	OF…	references	subscripts	of	the	individual	elements	of	a
particular	collection.	This	collection	may	be	a	nested	table	or	an	associative	array	that	has
numeric	subscripts.	The	third	form	of	the	BOUNDS_CLAUSE,	VALUES	OF…	references
values	of	the	individual	elements	of	a	particular	collection	that	is	either	a	nested	table	or
an	associative	array.

By	the	Way

A	collection	referenced	by	the	INDICES	OF	clause	may	be	sparse.	In	other
words,	some	of	its	elements	have	been	deleted.

Watch	Out!

When	using	the	VALUES	OF	option,	the	following	restrictions	apply:

	If	the	collection	used	in	the	VALUES	OF	clause	is	an	associative	array,	it	must
be	indexed	by	a	PLS_INTEGER.

	The	elements	of	the	collection	used	in	the	VALUES	OF	clause	must	be
PLS_INTEGER.

	When	a	collection	referenced	by	the	VALUES	OF	clause	is	empty,	the
FORALL	statement	causes	an	exception.

Next,	the	SQL_STATEMENT	is	a	static	or	dynamic	INSERT,	UPDATE,	or	DELETE
statement	that	references	one	or	more	collections.	Finally,	the	SAVE	EXCEPTION	clause
is	optional;	it	allows	the	FORALL	statement	to	continue	even	when	SQL_STATEMENT
causes	an	exception.

The	following	example	illustrates	how	the	FORALL	statement	may	be	used.	This
example,	as	well	as	other	examples	in	this	chapter,	use	a	TEST	table	created	specifically
for	this	purpose.	The	rows	from	the	TEST	table	can	be	easily	inserted,	updated,	or	deleted
without	affecting	the	STUDENT	schema	or	violating	any	integrity	constraints.

For	Example		ch18_1a.sql
Click	here	to	view	code	image

CREATE	TABLE	test

		(row_num		NUMBER

		,row_text	VARCHAR2(10));

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)		INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

		v_rows	NUMBER;

BEGIN

		—	Populate	collections

		FOR	i	IN	1..10

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Populate	TEST	table

		FORALL	i	IN	1..10

				INSERT	INTO	test	(row_num,	row_text)

				VALUES	(row_num_tab(i),	row_text_tab(i));

		COMMIT;

		—	Check	how	many	rows	where	inserted	in	the	TEST	table

		—	display	it	on	the	screen

		SELECT	COUNT(*)

				INTO	v_rows

				FROM	TEST;

		DBMS_OUTPUT.PUT_LINE	(‘There	are	‘||v_rows||’	rows	in	the	TEST	table’);

END;

As	mentioned	earlier,	when	SQL	statements	are	used	with	FORALL	statements,	they
reference	collection	elements.	Thus,	in	this	script,	you	define	two	collection	types,
row_num_type	and	row_text_type,	as	associative	arrays.	In	addition,	two
collections,	row_num_tab	and	row_text_tab,	are	populated	via	the	numeric	FOR
loop.	Next,	you	populate	the	TEST	table	with	the	data	from	these	two	collections.

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

There	are	10	rows	in	the	TEST	table

The	next	example	demonstrates	the	performance	gain	realized	through	use	of	the
FORALL	statement.	This	script	compares	the	execution	times	of	the	INSERT	statements
issued	against	the	TEST	table.	The	first	100	INSERT	statements	are	enclosed	by	the
numeric	FOR	loop	and	the	second	100	INSERT	statements	are	enclosed	by	the	FORALL
statement.

For	Example		ch18_2a.sql
Click	here	to	view	code	image

TRUNCATE	TABLE	test;

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)		INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

		v_start_time	INTEGER;

		v_end_time			INTEGER;

BEGIN

		—	Populate	collections

		FOR	i	IN	1..100

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Record	start	time

		v_start_time	:=	DBMS_UTILITY.GET_TIME;

		—	Insert	first	100	rows

		FOR	i	IN	1..100

		LOOP

				INSERT	INTO	test	(row_num,	row_text)

				VALUES	(row_num_tab(i),	row_text_tab(i));

		END	LOOP;

		—	Record	end	time

		v_end_time	:=	DBMS_UTILITY.GET_TIME;

		—	Calculate	and	display	elapsed	time

		DBMS_OUTPUT.PUT_LINE	(‘Duration	of	the	FOR	LOOP:	‘||

				(v_end_time	-	v_start_time));

		—	Record	start	time

		v_start_time	:=	DBMS_UTILITY.GET_TIME;

		—	Insert	second	100	rows

		FORALL	i	IN	1..100

				INSERT	INTO	test	(row_num,	row_text)

				VALUES	(row_num_tab(i),	row_text_tab(i));

		—	Record	end	time

		v_end_time	:=	DBMS_UTILITY.GET_TIME;

		—	Calculate	and	display	elapsed	time

		DBMS_OUTPUT.PUT_LINE	(‘Duration	of	the	FORALL	statement:	‘||

				(v_end_time	–	v_start_time));

		COMMIT;

END;

To	calculate	the	execution	times	for	the	numeric	FOR	loop	and	the	FORALL	statement,
the	script	employs	the	GET_TIME	function	defined	in	the	DBMS_UTILITY	package	that
is	owned	by	the	Oracle	user	SYS.	The	GET_TIME	function	returns	the	current	time	in
100ths	of	a	second.	Here	is	the	output	produced	by	the	preceding	example:
Click	here	to	view	code	image

Duration	of	the	FOR	LOOP:	1

Duration	of	the	FORALL	statement:	0

SAVE	EXCEPTIONS	Option
The	SAVE	EXCEPTIONS	option	enables	the	FORALL	statement	to	continue	even	when	a
corresponding	SQL	statement	causes	an	exception.	These	exceptions	are	stored	in	the
cursor	attribute	called	SQL%BULK_EXCEPTIONS.	The	SQL%BULK_EXCEPTIONS
attribute	is	a	collection	of	records	in	which	each	record	consists	of	two	fields,
ERROR_INDEX	and	ERROR_CODE.	The	ERROR_INDEX	field	stores	the	number	of	the
iteration	of	the	FORALL	statement	during	which	an	exception	was	encountered,	and	the
ERROR_CODE	stores	the	Oracle	error	code	corresponding	to	the	raised	exception.

The	number	of	exceptions	that	occurred	during	the	execution	of	the	FORALL	statement
can	be	retrieved	via	SQL%BULK_EXCEPTIONS.COUNT.	Although	the	individual	error
messages	are	not	saved,	they	can	be	looked	up	via	the	SQLERRM	function.

The	following	example	uses	a	FORALL	statement	with	the	SAVE	EXCEPTIONS
option.

For	Example		ch18_3a.sql
Click	here	to	view	code	image

TRUNCATE	TABLE	TEST;

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(11)		INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

		—	Define	user-defined	exception	and	associated	Oracle

		—	error	number	with	it

		errors	EXCEPTION;

		PRAGMA	EXCEPTION_INIT(errors,	-24381);

		v_rows	NUMBER;

BEGIN

		—	Populate	collections

		FOR	i	IN	1..10

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Modify	1,	5,	and	7	elements	of	the	V_ROW_TEXT	collection

		—	These	rows	will	cause	exceptions	in	the	FORALL	statement

		row_text_tab(1)	:=	RPAD(row_text_tab(1),	11,	‘	‘);

		row_text_tab(5)	:=	RPAD(row_text_tab(5),	11,	‘	‘);

		row_text_tab(7)	:=	RPAD(row_text_tab(7),	11,	‘	‘);

		—	Populate	TEST	table

		FORALL	i	IN	1..10	SAVE	EXCEPTIONS

				INSERT	INTO	test	(row_num,	row_text)

				VALUES	(row_num_tab(i),	row_text_tab(i));

		COMMIT;

EXCEPTION

		WHEN	errors

		THEN

				—	Display	total	number	of	records	inserted	in	the	TEST	table

				SELECT	count(*)

						INTO	v_rows

						FROM	test;

				DBMS_OUTPUT.PUT_LINE	(‘There	are	‘||v_rows||’	records	in	the	TEST

table’);

				—	Display	total	number	of	exceptions	encountered

				DBMS_OUTPUT.PUT_LINE	(‘There	were	‘||SQL%BULK_EXCEPTIONS.COUNT||’

exceptions’);

				—	Display	detailed	exception	information

				FOR	i	in	1..	SQL%BULK_EXCEPTIONS.COUNT	LOOP

						DBMS_OUTPUT.PUT_LINE	(‘Record	‘||

								SQL%BULK_EXCEPTIONS(i).error_index||’	caused	error	‘||i||’:	‘||

								SQL%BULK_EXCEPTIONS(i).error_code||’	‘||

								SQLERRM(-SQL%BULK_EXCEPTIONS(i).error_code));

				END	LOOP;

END;

This	example	declares	a	user-defined	exception	and	associates	it	with	the	ORA-24381
exception.	This	exception	occurs	when	errors	are	encountered	in	an	array	DML	statement

—in	this	case,	the	INSERT	statement	that	uses	collection	elements.

In	the	execution	section	of	the	script,	the	first,	fifth,	and	seventh	elements	of	the
row_text_tab	collection	are	expanded	to	store	11	characters	instead	of	10,	thereby
causing	exceptions	in	the	INSERT	statement	applied	against	the	TEST	table.	Note	the
presence	of	the	SAVE	EXCEPTION	clause	in	the	FORALL	statement.	As	mentioned
earlier,	the	SAVE	EXCEPTION	clause	allows	the	FORALL	statement	to	execute	to
completion.

The	exception-handling	section	checks	how	many	records	were	added	to	the	TEST
table	and	how	many	exception	records	are	present	in	the	SQL%BULK_EXCEPTIONS
collection.	The	latter	task	is	accomplished	by	employing	the	COUNT	method.	In	addition,
this	section	of	the	script	displays	detailed	exception	information,	such	as	the	record
number	that	caused	an	exception	and	the	error	message	associated	with	this	exception.

To	display	the	number	of	the	record	that	caused	an	exception,	the	error_index	field
is	referenced	in	the	DBMS_OUTPUT.PUT_LINE	statement	as	follows:
Click	here	to	view	code	image

SQL%BULK_EXCEPTIONS(i).error_index

	To	display	the	error	message	itself,	the	error_code	field	is	passed	as	an	input
parameter	to	the	SQLERRM	function.	Note	that	when	the	error_code	is	passed	to	the
SQLERRM	function,	it	is	prefixed	by	a	minus	sign.
Click	here	to	view	code	image

SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE)

When	run,	this	script	produces	the	following	output:
Click	here	to	view	code	image

There	are	7	records	in	the	TEST	table

There	were	3	exceptions

Record	1	caused	error	1:	12899	ORA-12899:	value	too	large	for

column		(actual:	,	maximum:)

Record	5	caused	error	2:	12899	ORA-12899:	value	too	large	for

column		(actual:	,	maximum:)

Record	7	caused	error	3:	12899	ORA-12899:	value	too	large	for

column		(actual:	,	maximum:)

As	mentioned	previously,	adding	the	SAVE	EXCEPTIONS	clause	to	the	FORALL
statement	enables	this	statement	to	execute	to	completion.	As	a	result,	the	INSERT
statement	was	able	to	add	seven	records	to	the	TEST	table	successfully.

INDICES	OF	Option
As	stated	previously,	the	INDICES	OF	option	enables	you	to	loop	through	a	sparse
collection.	Recall	that	such	collection	may	be	a	nested	table	or	an	associative	array.	The
use	of	the	INDICES	OF	option	is	illustrated	in	the	following	example.

For	Example		ch18_4a.sql
Click	here	to	view	code	image

TRUNCATE	TABLE	TEST;

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)		INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

		v_rows	NUMBER;

BEGIN

		—	Populate	collections

		FOR	i	IN	1..10

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Delete	1,	5,	and	7	elements	of	collections

		row_num_tab.DELETE(1);	row_text_tab.DELETE(1);

		row_num_tab.DELETE(5);	row_text_tab.DELETE(5);

		row_num_tab.DELETE(7);	row_text_tab.DELETE(7);

		—	Populate	TEST	table

		FORALL	i	IN	INDICES	OF	row_num_tab

				INSERT	INTO	test	(row_num,	row_text)

				VALUES	(row_num_tab(i),	row_text_tab(i));

		COMMIT;

		SELECT	COUNT(*)

				INTO	v_rows

				FROM	test;

		DBMS_OUTPUT.PUT_LINE	(‘There	are	‘||v_rows||’	rows	in	the	TEST	table’);

END;

To	make	the	associative	arrays	sparse,	the	first,	fifth,	and	seventh	elements	are	deleted
from	both	collections.	As	a	result,	the	FORALL	statement	iterates	seven	times,	and	seven
rows	are	added	to	the	TEST	table.	This	outcome	is	illustrated	by	the	following	output:
Click	here	to	view	code	image

There	are	7	rows	in	the	TEST	table

VALUES	OF	Option
The	VALUES	OF	option	specifies	that	the	values	of	the	loop	counter	in	the	FORALL
statement	are	based	on	the	values	of	the	elements	of	the	specified	collection.	Essentially,
this	collection	is	a	group	of	indices	that	the	FORALL	statement	can	loop	through.
Furthermore,	these	indices	do	not	need	to	be	unique	and	can	be	listed	in	arbitrary	order.
The	following	example	demonstrates	the	use	of	the	VALUES	OF	option.

For	Example		ch18_5a.sql
Click	here	to	view	code	image

CREATE	TABLE	TEST_EXC

		(row_num		NUMBER

		,row_text	VARCHAR2(50));

TRUNCATE	TABLE	TEST;

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(11)		INDEX	BY	PLS_INTEGER;

		TYPE	exc_ind_type		IS	TABLE	OF	PLS_INTEGER			INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

		exc_ind_tab		exc_ind_type;

		—	Define	user-defined	exception	and	associated	Oracle

		—	error	number	with	it

		errors	EXCEPTION;

		PRAGMA	EXCEPTION_INIT(errors,	-24381);

BEGIN

		—	Populate	collections

		FOR	i	IN	1..10

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Modify	1,	5,	and	7	elements	of	the	ROW_TEXT_TAB	collection

		—	These	rows	will	cause	exceptions	in	the	FORALL	statement

		row_text_tab(1)	:=	RPAD(row_text_tab(1),	11,	‘	‘);

		row_text_tab(5)	:=	RPAD(row_text_tab(5),	11,	‘	‘);

		row_text_tab(7)	:=	RPAD(row_text_tab(7),	11,	‘	‘);

		—	Populate	TEST	table

		FORALL	i	IN	1..10	SAVE	EXCEPTIONS

				INSERT	INTO	test	(row_num,	row_text)

				VALUES	(row_num_tab(i),	row_text_tab(i));

		COMMIT;

EXCEPTION

		WHEN	errors

		THEN

				—	Populate	EXC_IND_TAB	collection	to	be	used	in	the	VALUES	OF

				—	clause

				FOR	i	in	1..SQL%BULK_EXCEPTIONS.COUNT

				LOOP

						exc_ind_tab(i)	:=	SQL%BULK_EXCEPTIONS(i).error_index;

				END	LOOP;

				—	Insert	records	that	caused	exceptions	in	the	TEST_EXC	table

				FORALL	i	in	VALUES	OF	exc_ind_tab

						INSERT	INTO	test_exc	(row_num,	row_text)

						VALUES	(row_num_tab(i),	row_text_tab(i));

		COMMIT;

END;

This	script	employs	the	TEST_EXC	table,	which	has	the	same	structure	as	the	TEST
table	but	expanded	data	type	sizes.	The	newly	created	table	is	used	to	store	records	that
cause	exceptions	when	they	are	inserted	in	the	TEST	table.	Next,	the	new	collection	data
type,	exc_ind_type,	is	defined	as	an	associative	array	of	PLS_INTEGERS.	Finally,

the	new	collection	variable,	exc_ind_tab,	is	defined	based	on	the	exc_ind_type.
This	new	collection	is	referenced	by	the	VALUES	OF	clause	in	the	exception-handling
section	of	the	script.

To	cause	exceptions	in	the	FORALL	statement,	the	first,	fifth,	and	seventh	elements	of
the	row_text_tab	associative	array	are	modified	to	contain	11	characters	instead	of	10.
Then,	in	the	exception-handling	section	of	the	script,	the	exc_ind_tab	collection	is
populated	with	index	values	of	the	rows	that	caused	the	exceptions.	In	this	example,	these
index	values	are	1,	5,	and	7,	and	they	are	stored	in	the	error_index	field	of	the
SQL%BULK_EXCEPTION	collection.	Once	the	exc_ind_tab	is	populated,	it	is	used	to
iterate	through	the	row_num_tab	and	row_test_tab	collections	again	and	insert
erroneous	records	in	the	TEST_EXC	table.

When	this	script	is	executed,	the	TEST	and	TEST_EXC	tables	contain	the	following
records:
Click	here	to	view	code	image

select	*

		from	test;

			ROW_NUM							ROW_TEXT

–––-							––––––––––––––––

									2							row	2

									3							row	3

									4							row	4

									6							row	6

									8							row	8

									9							row	9

								10							row	10

select	*

		from	test_exc;

			ROW_NUM							ROW_TEXT

–––-							––––––––––––––––—

									1							row	1

									5							row	5

									7							row	7

Lab	18.2:	The	BULK	COLLECT	Clause

After	this	lab,	you	will	be	able	to

	Use	the	BULK	COLLECT	Clause

The	BULK	COLLECT	clause	fetches	the	batches	of	results	and	brings	them	back	from	the
SQL	engine	to	the	PL/SQL	engine.	For	example,	consider	a	cursor	against	the	STUDENT
table	that	returns	the	student’s	ID,	first	name,	and	last	name.	Once	this	cursor	is	opened,
the	rows	are	fetched	one	by	one	until	all	rows	have	been	processed.	Then	the	cursor	is
closed.	These	steps	are	illustrated	in	the	following	example.

For	Example		ch18_6a.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	student_cur	IS

				SELECT	student_id,	first_name,	last_name

						FROM	student;

BEGIN

		FOR	rec	IN	student_cur

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘student_id:	‘||rec.student_id);

				DBMS_OUTPUT.PUT_LINE	(‘first_name:	‘||rec.first_name);

				DBMS_OUTPUT.PUT_LINE	(‘last_name:		’||rec.last_name);

		END	LOOP;

END;

Recall	that	the	cursor	FOR	loop	opens	and	closes	the	cursor	and	fetches	cursor	records
implicitly.

The	same	task	of	fetching	records	from	the	STUDENT	table	can	be	accomplished	by
employing	the	BULK	COLLECT	clause.	The	difference	here	is	that	the	BULK	COLLECT
clause	will	fetch	all	rows	from	the	STUDENT	table	at	once.	Because	BULK	COLLECT
fetches	multiple	rows,	these	rows	are	stored	in	collection	variables.

In	the	following	modified	version	of	the	preceding	example,	cursor	processing	is
replaced	by	the	BULK	COLLECT	clause.

For	Example		ch18_6b.sql
Click	here	to	view	code	image

DECLARE

		—	Define	collection	type	and	variables	to	be	used	by	the

		—	BULK	COLLECT	clause

		TYPE	student_id_type	IS	TABLE	OF	student.student_id%TYPE;

		TYPE	first_name_type	IS	TABLE	OF	student.first_name%TYPE;

		TYPE	last_name_type		IS	TABLE	OF	student.last_name%TYPE;

		student_id_tab	student_id_type;

		first_name_tab	first_name_type;

		last_name_tab		last_name_type;

BEGIN

		—	Fetch	all	student	data	at	once	via	BULK	COLLECT	clause

		SELECT	student_id,	first_name,	last_name

			BULK	COLLECT	INTO	student_id_tab,	first_name_tab,	last_name_tab

			FROM	student;

		FOR	i	IN	student_id_tab.FIRST..student_id_tab.LAST

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘student_id:	‘||student_id_tab(i));

				DBMS_OUTPUT.PUT_LINE	(‘first_name:	‘||first_name_tab(i));

				DBMS_OUTPUT.PUT_LINE	(‘last_name:		’||last_name_tab(i));

		END	LOOP;

END;

This	script	declares	three	nested	table	types	and	variables.	These	variables	are	used	to
store	data	returned	by	the	SELECT	statement	with	the	BULK	COLLECT	clause.	Because
this	version	of	the	script	is	using	the	BULK	COLLECT	clause,	there	is	no	need	to	declare

and	process	a	cursor.

Did	You	Know?

When	nested	tables	are	populated	via	SELECT	with	the	BULK	COLLECT
clause,	they	are	initialized	and	extended	automatically.	Recall	that	a	nested
table	must	usually	be	initialized	prior	to	its	use	by	calling	a	constructor
function	that	has	the	same	name	as	its	nested	table	type.	Once	it	has	been
initialized,	the	nested	table	must	be	extended	via	the	EXTEND	method	before
the	next	value	can	be	assigned	to	it.

To	display	the	data	that	has	been	selected	into	the	individual	collections,	the	script	loops
through	them	via	the	numeric	FOR	loop.	Notice	that	the	lower	and	upper	limits	for	the
loop	counter	are	specified	via	the	FIRST	and	LAST	methods.

Did	You	Know?

The	BULK	COLLECT	clause	is	similar	to	a	cursor	loop	in	that	it	does	not
raise	a	NO_DATA_FOUND	exception	when	the	SELECT	statement	does	not
return	any	records.	As	a	result,	it	is	considered	good	practice	to	check
whether	the	resulting	collection	contains	any	data.

Because	the	BULK	COLLECT	clause	does	not	restrict	the	size	of	a	collection	and
extends	it	automatically,	it	is	also	a	good	idea	to	limit	the	result	set	when	a	SELECT
statement	returns	large	amounts	of	data.	This	can	be	achieved	by	using	BULK	COLLECT
with	a	cursor	SELECT	statement	and	by	adding	the	LIMIT	option.

For	Example		ch18_6c.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	student_cur	IS

				SELECT	student_id,	first_name,	last_name

					FROM	student;

		—	Define	collection	type	and	variables	to	be	used	by	the

		—	BULK	COLLECT	clause

		TYPE	student_id_type	IS	TABLE	OF	student.student_id%TYPE;

		TYPE	first_name_type	IS	TABLE	OF	student.first_name%TYPE;

		TYPE	last_name_type		IS	TABLE	OF	student.last_name%TYPE;

		student_id_tab	student_id_type;

		first_name_tab	first_name_type;

		last_name_tab		last_name_type;

		—	Define	variable	to	be	used	by	the	LIMIT	clause

		v_limit	PLS_INTEGER	:=	50;

BEGIN

		OPEN	student_cur;

		LOOP

				—	Fetch	50	rows	at	once

				FETCH	student_cur

					BULK	COLLECT	INTO	student_id_tab,	first_name_tab,	last_name_tab

				LIMIT	v_limit;

				EXIT	WHEN	student_id_tab.COUNT	=	0;

				FOR	i	IN	student_id_tab.FIRST..student_id_tab.LAST

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘student_id:	‘||student_id_tab(i));

						DBMS_OUTPUT.PUT_LINE	(‘first_name:	‘||first_name_tab(i));

						DBMS_OUTPUT.PUT_LINE	(‘last_name:		’||last_name_tab(i));

				END	LOOP;

		END	LOOP;

		CLOSE	student_cur;

END;

This	version	of	the	script	employs	the	BULK	COLLECT	clause	with	the	LIMIT	option
to	fetch	50	rows	from	the	STUDENT	table	at	once.	In	other	words,	each	collection	will
contain	at	most	50	records.	To	accomplish	this	task,	the	BULK	COLLECT	clause	is	used
in	conjunction	with	the	cursor	loop.	In	this	case,	the	exit	condition	of	the	loop	is	based	on
the	number	of	records	in	the	collection	rather	than	the	student_cur%NOTFOUND
attribute.

Note	how	the	numeric	FOR	loop	that	displays	information	on	the	screen	has	been
moved	inside	the	cursor	loop.	This	is	done	because	every	new	batch	of	50	records	fetched
by	the	BULK	COLLECT	clause	will	replace	the	previous	batch	of	50	records	fetched	in
the	previous	iteration.

So	far,	you	have	seen	examples	of	the	BULK	COLLECT	clause	fetching	data	into
collections	where	the	underlying	elements	are	simple	data	types	such	as	NUMBER	or
VARCHAR2.	However,	the	BULK	COLLECT	clause	can	also	be	used	to	fetch	data	into
collections	of	records	or	objects.	Collections	of	objects	are	discussed	in	Chapter	23.	In	the
following	modified	version	of	the	previous	example,	student	data	is	fetched	into	a
collection	of	user-defined	records.

For	Example		ch18_6d.sql
Click	here	to	view	code	image

DECLARE

		CURSOR	student_cur	IS

				SELECT	student_id,	first_name,	last_name

						FROM	student;

		—	Define	record	type

		TYPE	student_rec	IS	RECORD

				(student_id	student.student_id%TYPE,

					first_name	student.first_name%TYPE,

					last_name		student.last_name%TYPE);

		—	Define	collection	type

		TYPE	student_type	IS	TABLE	OF	student_rec;

		—	Define	collection	variable

		student_tab	student_type;

		—	Define	variable	to	be	used	by	the	LIMIT	clause

		v_limit	PLS_INTEGER	:=	50;

BEGIN

		OPEN	student_cur;

		LOOP

				—	Fetch	50	rows	at	once

				FETCH	student_cur	BULK	COLLECT	INTO	student_tab	LIMIT	v_limit;

				EXIT	WHEN	student_tab.COUNT	=	0;

				FOR	i	IN	student_tab.FIRST..student_tab.LAST

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘student_id:	‘||student_tab(i).student_id);

						DBMS_OUTPUT.PUT_LINE	(‘first_name:	‘||student_tab(i).first_name);

						DBMS_OUTPUT.PUT_LINE	(‘last_name:		’||student_tab(i).last_name);

				END	LOOP;

		END	LOOP;

		CLOSE	student_cur;

END;

In	this	version	of	the	script,	the	result	set	returned	by	the	cursor	is	fetched	into
collection	of	user-defined	records,	student_tab.	As	a	consequence,	the	FETCH
statement	with	the	BULK	COLLECTION	option	does	not	need	to	reference	individual
record	elements.

All	versions	of	this	example	produce	the	same	output,	a	portion	of	which	is	shown	here:
student_id:	230

first_name:	George

last_name	:	Kocka

student_id:	232

first_name:	Janet

last_name	:	Jung

student_id:	233

first_name:	Kathleen

last_name	:	Mulroy

student_id:	234

first_name:	Joel

last_name	:	Brendler

…

So	far	you	have	seen	how	to	use	the	BULK	COLLECT	clause	with	the	SELECT
statement.	However,	oftentimes	BULK	COLLECT	is	used	with	INSERT,	UPDATE,	and
DELETE	statements.	In	this	case,	the	BULK	COLLECT	clause	may	be	used	in	conjunction
with	the	RETURNING	clause,	as	shown	in	the	following	example.

For	Example		ch18_7a.sql
Click	here	to	view	code	image

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)	INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

BEGIN

		DELETE	FROM	test

		RETURNING	row_num,	row_text

		BULK	COLLECT	INTO	row_num_tab,	row_text_tab;

		DBMS_OUTPUT.PUT_LINE	(‘Deleted	‘||SQL%ROWCOUNT||’	rows:’);

		FOR	i	IN	row_num_tab.FIRST..row_num_tab.LAST

		LOOP

				DBMS_OUTPUT.PUT_LINE

						(‘row_num	=	‘||row_num_tab(i)||’	row_text	=	‘	||row_text_tab(i));

		END	LOOP;

		COMMIT;

END;

This	script	deletes	records	from	the	TEST	table	created	and	populated	in	Lab	18.1.	The
DELETE	statement	returns	the	ROW_NUM	and	ROW_TEXT	values	via	the	RETURNING
clause.	These	values	are	then	fetched	by	the	BULK	COLLECT	clause	into	two	collections,
row_num_tab	and	row_text_tab.	Next,	to	display	the	data	that	has	been	fetched
into	the	individual	collections,	they	are	looped	through	via	the	numeric	FOR	loop.

When	run,	this	script	produces	the	following	output:
Click	here	to	view	code	image

Deleted	7	rows:

row_num	=	2	row_text	=	row	2

row_num	=	3	row_text	=	row	3

row_num	=	4	row_text	=	row	4

row_num	=	6	row_text	=	row	6

row_num	=	8	row_text	=	row	8

row_num	=	9	row_text	=	row	9

row_num	=	10	row_text	=	row	10

As	mentioned	previously,	the	BULK	COLLECT	clause	is	similar	to	the	cursor	loop	in
that	it	does	not	generate	a	NO_DATA_FOUND	exception	when	no	rows	are	returned	by	the
SELECT	statement.	This	is	illustrated	by	the	following	example.

For	Example		ch18_8a.sql
Click	here	to	view	code	image

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER									INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)	INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

BEGIN

		SELECT	row_num,	row_text

				BULK	COLLECT	INTO	row_num_tab,	row_text_tab

				FROM	test;

		FOR	i	IN	row_num_tab.FIRST..row_num_tab.LAST

		LOOP

				DBMS_OUTPUT.PUT_LINE

						(‘row_num	=	‘||row_num_tab(i)||’	row_text	=	‘	||row_text_tab(i));

		END	LOOP;

END;

In	this	example,	the	data	is	selected	from	the	TEST	table	and	populated	into	two
collections,	row_num_tab	and	row_text_tab.	This	is	accomplished	via	the	BULK
COLLECT	clause.	Next,	the	collection	data	is	displayed	on	the	screen	through	the	numeric
FOR	loop,	with	the	values	returned	by	the	row_num_tab.FIRST	and
row_num_tab.LAST	methods	being	used	as	lower	and	upper	bounds	of	the	loop.

At	first	glance,	this	example	seems	very	similar	to	the	example	ch18_6b.sql	that
appeared	earlier	in	this	lab,	as	it	follows	the	same	steps.	First,	collection	types	and
variables	are	declared.	Second,	the	data	is	selected	in	the	collection	variables.	Third,	the
data	in	the	collection	variables	is	displayed	on	the	screen.	However,	when	it	is	run,	this
script	raises	the	following	exception:
Click	here	to	view	code	image

ORA-06502:	PL/SQL:	numeric	or	value	error

ORA-06512:	at	line	14

This	error	is	caused	by	the
Click	here	to	view	code	image

FOR	i	IN	row_num_tab.FIRST..row_num_tab.LAST

statement,	as	the	collection	variables	do	not	have	any	data	in	them.	This	situation	occurs
because	the	data	from	the	TEST	table	was	deleted	in	the	ch18_7a.sql	example.	To	remedy
this	problem,	the	example	should	be	modified	as	follows	(affected	statements	are	shown	in
bold):

For	Example		ch18_8b.sql
Click	here	to	view	code	image

DECLARE

		—	Define	collection	types	and	variables

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)		INDEX	BY	PLS_INTEGER;

		row_num_tab		row_num_type;

		row_text_tab	row_text_type;

BEGIN

		SELECT	row_num,	row_text

			BULK	COLLECT	INTO	row_num_tab,	row_text_tab

			FROM	test;

		IF	row_num_tab.COUNT	!=	0

		THEN

				FOR	i	IN	row_num_tab.FIRST..row_num_tab.LAST

				LOOP

						DBMS_OUTPUT.PUT_LINE

								(‘row_num	=	‘||row_num_tab(i)||’	row_text	=	‘	||row_text_tab(i));

				END	LOOP;

		ELSE

				DBMS_OUTPUT.PUT_LINE	(‘row_num_tab.COUNT		=	‘||row_num_tab.COUNT);

				DBMS_OUTPUT.PUT_LINE	(‘row_text_tab.COUNT	=	‘||row_text_tab.COUNT);

		END	IF;

END;

When	run,	this	version	of	the	script	does	not	cause	any	exception.	The	IF	statement
evaluates	to	FALSE	when	the	COUNT	method	returns	0,	as	illustrated	by	the	output:

row_num_tab.COUNT		=	0

row_text_tab.COUNT	=	0

Throughout	this	chapter,	you	have	seen	how	to	use	the	FORALL	statement	and	BULK
COLLECT	clause.	Now	we	will	consider	an	example	that	combines	both	techniques.	This
example	uses	the	MY_ZIPCODE	table,	which	is	created	based	on	the	ZIPCODE	table.
Note	that	the	CREATE	TABLE	statement	creates	an	empty	table	because	the	criteria
specified	in	the	WHERE	clause	do	not	return	any	records.

For	Example		ch18_9a.sql
Click	here	to	view	code	image

CREATE	TABLE	my_zipcode	AS

SELECT	*

		FROM	zipcode

	WHERE	1	=	2;

DECLARE

		—	Declare	collection	types

		TYPE	string_type	IS	TABLE	OF	VARCHAR2(100)	INDEX	BY	PLS_INTEGER;

		TYPE	date_type			IS	TABLE	OF	DATE										INDEX	BY	PLS_INTEGER;

		—	Declare	collection	variables	to	be	used	by	the	FORALL	statement

		zip_tab								string_type;

		city_tab							string_type;

		state_tab						string_type;

		cr_by_tab						string_type;

		cr_date_tab				date_type;

		mod_by_tab					string_type;

		mod_date_tab			date_type;

		v_rows	INTEGER	:=	0;

BEGIN

		—	Populate	individual	collections

		SELECT	*

				BULK	COLLECT	INTO	zip_tab,	city_tab,	state_tab,	cr_by_tab,

						cr_date_tab,	mod_by_tab,	mod_date_tab

				FROM	zipcode

			WHERE	state	=	‘CT’;

		—	Populate	MY_ZIPCODE	table

		FORALL	i	in	1..zip_tab.COUNT

				INSERT	INTO	my_zipcode

						(zip,	city,	state,	created_by,	created_date,	modified_by,

							modified_date)

				VALUES

						(zip_tab(i),	city_tab(i),	state_tab(i),	cr_by_tab(i),

							cr_date_tab(i),	mod_by_tab(i),	mod_date_tab(i));

		COMMIT;

		—	Check	how	many	records	were	added	to	MY_ZIPCODE	table

		SELECT	COUNT(*)

				INTO	v_rows

				FROM	my_zipcode;

		DBMS_OUTPUT.PUT_LINE	(v_rows||’	records	were	added	to	MY_ZIPCODE

table’);

END;

This	script	populates	the	MY_ZIPCODE	table	with	the	records	selected	from	the
ZIPCODE	table.	To	enable	use	of	the	BULK	COLLECT	and	FORALL	statements,	it
employs	seven	collections.	Note	that	there	are	only	two	collection	types	associated	with
these	seven	collections.	This	is	because	the	individual	collections	store	only	two	data
types,	VARCHAR2	and	DATE.	When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

19	records	were	added	to	MY_ZIPCODE	table

Next,	consider	another	example	where	the	FORALL	statement	and	BULK	COLLECT
clause	are	used	together	with	the	DELETE	statement.	In	this	example,	the	records	from	the
MY_ZIPCODE	table	are	deleted	for	a	few	ZIP	codes,	and	the	corresponding	city	names
along	with	the	deleted	ZIP	codes	are	stored	in	the	city_tab	and	zip_tab	collections,
respectively.

For	Example		ch18_10a.sql
Click	here	to	view	code	image

DECLARE

		—	Declare	collection	types

		TYPE	string_type	IS	TABLE	OF	VARCHAR2(100);

		—	Declare	collection	variables	to	be	used	by	the	FORALL	statement

		—	and	BULK	COLLECT	clause

		zip_codes	string_type	:=	string_type	(‘06401’,	‘06455’,	‘06483’,

‘06520’,	‘06605’);

		zip_tab			string_type;

		city_tab		string_type;

		v_rows	INTEGER	:=	0;

BEGIN

		—	Delete	some	records	from	MY_ZIPCODE	table

		FORALL	i	in	zip_codes.FIRST..zip_codes.LAST

				DELETE	FROM	my_zipcode

					WHERE	zip	=	zip_codes(i)

				RETURNING	zip,	city

				BULK	COLLECT	INTO	zip_tab,	city_tab;

		COMMIT;

		DBMS_OUTPUT.PUT_LINE	(‘The	following	records	were	deleted	from

MY_ZIPCODE	table:’);

		FOR	i	in	zip_tab.FIRST..zip_tab.LAST

		LOOP

				DBMS_OUTPUT.PUT_LINE	(‘Zip	code	‘||zip_tab(i)||’,	city

‘||city_tab(i));

		END	LOOP;

END;

In	this	script,	the	FORALL	statement	runs	the	DELETE	statement	for	a	given	list	of	ZIP
code	values	stored	in	the	zip_codes	collection.	Also,	the	DELETE	statement	contains
the	RETURNING	clause	with	the	BULK	COLLECT	clause,	which	in	turn	stores	ZIP	codes
and	city	names	in	the	zip_tab	and	city_tab	collections,	respectively.	Finally,	the
numeric	FOR	loop	is	used	to	display	the	data	stored	in	the	zip_tab	and	city_tab
collections,	as	illustrated	by	the	output	from	the	script:

Click	here	to	view	code	image

The	following	records	were	deleted	from	MY_ZIPCODE	table:

Zip	code	06401,	city	Ansonia

Zip	code	06455,	city	Middlefield

Zip	code	06483,	city	Oxford

Zip	code	06520,	city	New	Haven

Zip	code	06605,	city	Bridgeport

Lab	18.3:	Binding	Collections	in	SQL	Statements

After	this	lab,	you	will	be	able	to

	Bind	Collections	When	Using	EXECUTE	IMMEDIATE	Statements

	Bind	Collections	When	Using	OPEN-FOR,	FETCH,	and	CLOSE	Statements

As	mentioned	previously,	the	ability	to	bind	collection	data	types	when	employing
dynamic	SQL	has	been	added	in	Oracle	12c.	Recall	that	dynamic	SQL	was	covered	in
Chapter	17,	where	you	learned	how	to	use	the	EXECUTE	IMMEDIATE	statement	and
OPEN-FOR,	FETCH,	and	CLOSE	statements.

Binding	Collections	with	EXECUTE	IMMEDIATE	Statements
In	Chapter	17,	you	saw	numerous	examples	of	the	EXECUTE	IMMEDIATE	statement.
All	of	these	examples	have	one	thing	in	common:	The	data	types	of	the	bind	variables	are
known	SQL	types.	In	other	words,	these	data	types	are	all	supported	by	SQL,	such	as
NUMBER	and	VARCHAR2.	In	Oracle	12c,	it	is	possible	to	use	bind	variables	based	on	the
collection	and	record	types,	albeit	with	one	restriction	applied:	The	collection	or	record
data	type	must	be	declared	in	the	package	specification.

Consider	the	package	called	TEST_ADM_PKG,	shown	in	Listing	18.3.	This	package
contains	definitions	of	two	collection	types	and	three	procedures	that	insert,	update,	and
delete	records	from	the	TEST	table.	(Procedures,	functions,	and	packages	are	covered	in
detail	in	Chapters	19	through	21.)

Listing	18.3	TEST_ADM_PKG	Package	with	Collection	Types
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	test_adm_pkg

AS

		—	Define	collection	types

		TYPE	row_num_type		IS	TABLE	OF	NUMBER								INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)		INDEX	BY	PLS_INTEGER;

		—	Define	procedures

		PROCEDURE	populate_test	(row_num_tab		ROW_NUM_TYPE

																										,row_num_type	ROW_TEXT_TYPE);

		PROCEDURE	update_test	(row_num_tab		ROW_NUM_TYPE

																								,row_num_type	ROW_TEXT_TYPE);

		PROCEDURE	delete_test	(row_num_tab	ROW_NUM_TYPE);

END	test_adm_pkg;

/

CREATE	OR	REPLACE	PACKAGE	BODY	test_adm_pkg

AS

		PROCEDURE	populate_test	(row_num_tab		ROW_NUM_TYPE

																										,row_num_type	ROW_TEXT_TYPE)

		IS

		BEGIN

				FORALL	i	IN	1..10

						INSERT	INTO	test	(row_num,	row_text)

						VALUES	(row_num_tab(i),	row_num_type(i));

		END	populate_test;

		PROCEDURE	update_test	(row_num_tab		ROW_NUM_TYPE

																								,row_num_type	ROW_TEXT_TYPE)

		IS

		BEGIN

				FORALL	i	IN	1..10

						UPDATE	test

									SET	row_text	=	row_num_type(i)

							WHERE	row_num	=	row_num_tab(i);

		END	update_test;

		PROCEDURE	delete_test	(row_num_tab	ROW_NUM_TYPE)

		IS

		BEGIN

				FORALL	i	IN	1..10

						DELETE	from	test

							WHERE	row_num	=	row_num_tab(i);

		END	delete_test;

END	test_adm_pkg;

/

This	package	has	both	a	package	specification	and	a	package	body.	The	package
specification	contains	declarations	of	two	associative	array	types	(ROW_NUM_TYPE	and
ROW_TEXT_TYPE)	and	three	procedures	(POPULATE_TEST,	UPDATE_TEST,	and
DELETE_TEST).	Each	procedure	has	parameters	ROW_NUM_TAB	and	ROW_TEXT_TAB
that	are	based	on	the	collection	types	defined	in	this	package.	The	package	body	contains
the	code	for	the	procedures	declared	in	the	package	specification.

The	following	example	uses	this	newly	created	package.	References	to	the	package
objects	are	highlighted	in	bold.

For	Example		ch18_11a.sql
Click	here	to	view	code	image

DECLARE

		row_num_tab		test_adm_pkg.row_num_type;

		row_text_tab	test_adm_pkg.row_text_type;

		v_rows	NUMBER;

BEGIN

		—	Populate	collections

		FOR	i	IN	1..10

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Delete	previously	added	data	from	the	TEST	table

		test_adm_pkg.delete_test	(row_num_tab);

		—	Populate	TEST	table

		test_adm_pkg.populate_test	(row_num_tab,	row_text_tab);

		COMMIT;

		—	Check	how	many	rows	where	inserted	in	the	TEST	table

		—	and	display	this	number	on	the	screen

		SELECT	COUNT(*)

				INTO	v_rows

				FROM	TEST;

		DBMS_OUTPUT.PUT_LINE	(‘There	are	‘||v_rows||’	rows	in	the	TEST	table’);

END;

This	example	is	very	similar	to	the	example	ch18_1a.sql	used	in	Lab	18.1.	It	populates
the	TEST	table,	checks	how	many	records	were	added	to	the	TEST	table,	and	displays	this
information	on	the	screen.	The	main	difference	is	that	it	references	the	TEST_ADM_PKG
package	when	declaring	two	collection	variables	and	it	calls	the	DELETE_TEST	and
POPULATE_TEST	procedures	to	delete	previously	added	records	to	the	TEST	table	and
repopulate	the	table	with	the	new	data.	Note	that	all	of	the	references	to	the	packaged
objects	are	prefixed	by	the	package	name.

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

There	are	10	rows	in	the	TEST	table

Now	consider	a	modified	version	of	this	example	where	calls	to	the	procedures
DELETE_TEST	and	POPULATE_TEST	are	embedded	in	the	dynamic	SQL.	All	changes
are	shown	in	bold.

For	Example		ch18_11b.sql
Click	here	to	view	code	image

DECLARE

		row_num_tab		test_adm_pkg.row_num_type;

		row_text_tab	test_adm_pkg.row_text_type;

		v_dyn_sql	VARCHAR2(1000);

		v_rows	NUMBER;

BEGIN

		—	Populate	collections

		FOR	i	IN	1..10

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Delete	previously	added	data	from	the	TEST	table

		v_dyn_sql	:=	‘begin	test_adm_pkg.delete_test	(:row_num_tab);	end;’;

		EXECUTE	IMMEDIATE	v_dyn_sql	USING	row_num_tab;

		—	Populate	TEST	table

		v_dyn_sql	:=	‘begin	test_adm_pkg.populate_test	(:row_num_tab,

:row_text_tab);	end;’;

		EXECUTE	IMMEDIATE	v_dyn_sql	USING	row_num_tab,	row_text_tab;

		COMMIT;

		—	Check	how	many	rows	where	inserted	in	the	TEST	table

		—	display	it	on	the	screen

		SELECT	COUNT(*)

				INTO	v_rows

				FROM	TEST;

		DBMS_OUTPUT.PUT_LINE	(‘There	are	‘||v_rows||’	rows	in	the	TEST	table’);

END;

This	version	of	the	script	declares	a	new	variable,	v_dyn_sql,	that	is	used	to	store
dynamic	SQL	statement.	Next,	the	calls	to	the	DELETE_TEST	and	POPULATE_TEST
procedures	are	replaced	by	the	dynamic	SQL	statements	that	are	executed	by	the
EXECUTE	IMMEDIATE	statement.

Notice	the	syntax	of	the	dynamic	SQL	statements.	In	the	original	example,	the
packaged	procedures	are	invoked	in	this	way:
Click	here	to	view	code	image

—	Delete	previously	added	data	from	the	TEST	table

test_adm_pkg.delete_test	(row_num_tab);

—	Populate	TEST	table

test_adm_pkg.populate_test	(row_num_tab,	row_text_tab);

In	the	modified	version	of	the	example,	calls	to	these	procedures	are	placed	between	the
BEGIN	and	END	statements:
Click	here	to	view	code	image

—	Delete	previously	added	data	from	the	TEST	table

v_dyn_sql	:=	‘begin	test_adm_pkg.delete_test	(:row_num_tab);	end;’;

EXECUTE	IMMEDIATE	v_dyn_sql	USING	row_num_tab;

—	Populate	TEST	table

v_dyn_sql	:=	‘begin	test_adm_pkg.populate_test	(:row_num_tab,

:row_text_tab);	end;’;

EXECUTE	IMMEDIATE	v_dyn_sql	USING	row_num_tab,	row_text_tab;

This	approach	is	used	because	each	dynamic	SQL	statement	is	executed	as	an	anonymous
PL/SQL	block	and,	therefore,	requires	BEGIN	and	END	statements.	If	these	BEGIN	and
END	statements	are	omitted	from	the	dynamic	SQL,	the	script	will	not	execute
successfully.	This	is	illustrated	by	the	following	example	(affected	statements	are	shown
in	bold):

For	Example		ch18_11c.sql
Click	here	to	view	code	image

DECLARE

		row_num_tab		test_adm_pkg.row_num_type;

		row_text_tab	test_adm_pkg.row_text_type;

		v_dyn_sql	VARCHAR2(1000);

		v_rows	NUMBER;

BEGIN

		—	Populate	collections

		FOR	i	IN	1..10

		LOOP

				row_num_tab(i)		:=	i;

				row_text_tab(i)	:=	‘row	‘||i;

		END	LOOP;

		—	Delete	previously	added	data	from	the	TEST	table

		v_dyn_sql	:=	‘test_adm_pkg.delete_test	(:row_num_tab);’;

		EXECUTE	IMMEDIATE	v_dyn_sql	USING	row_num_tab;

		—	Populate	TEST	table

		v_dyn_sql	:=	‘test_adm_pkg.populate_test	(:row_num_tab,

:row_text_tab);’;

		EXECUTE	IMMEDIATE	v_dyn_sql	USING	row_num_tab,	row_text_tab;

		COMMIT;

		—	Check	how	many	rows	where	inserted	in	the	TEST	table

		—	display	it	on	the	screen

		SELECT	COUNT(*)

				INTO	v_rows

				FROM	TEST;

		DBMS_OUTPUT.PUT_LINE	(‘There	are	‘||v_rows||’	rows	in	the	TEST	table’);

END;

This	version	of	the	script	produces	the	following	error:
Click	here	to	view	code	image

ORA-00900:	invalid	SQL	statement

ORA-06512:	at	line	18

As	mentioned	previously,	starting	with	Oracle	12c	you	can	also	use	bind	variables
based	on	the	record	types.	Similar	to	the	collection	types,	the	record	types	must	be	defined
in	the	package	specification.	Consider	the	modified	version	of	TEST_ADM_PKG	shown	in
Listing	18.4.	The	package	now	contains	a	definition	of	a	record	type	and	a	new	procedure
that	populates	a	record	variable	from	the	TEST	table	using	the	newly	created	record	type.
Newly	added	items	are	shown	in	bold.

Listing	18.4	TEST_ADM_PKG	Package	with	Record	Type
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	test_adm_pkg

AS

		—	Define	collection	types

		TYPE	row_num_type		IS	TABLE	OF	NUMBER							INDEX	BY	PLS_INTEGER;

		TYPE	row_text_type	IS	TABLE	OF	VARCHAR2(10)	INDEX	BY	PLS_INTEGER;

		—	Define	record	type

		TYPE	rec_type	IS	RECORD

			(row_num		NUMBER

			,row_text	VARCHAR2(10));

		—	Define	procedures

		PROCEDURE	populate_test	(row_num_tab		ROW_NUM_TYPE

																										,row_num_type	ROW_TEXT_TYPE);

		PROCEDURE	update_test	(row_num_tab		ROW_NUM_TYPE

																								,row_num_type	ROW_TEXT_TYPE);

		PROCEDURE	delete_test	(row_num_tab	ROW_NUM_TYPE);

		PROCEDURE	populate_test_rec	(row_num_val	IN	NUMBER

																														,test_rec			OUT	REC_TYPE);

END	test_adm_pkg;

/

CREATE	OR	REPLACE	PACKAGE	BODY	test_adm_pkg

AS

		PROCEDURE	populate_test	(row_num_tab		ROW_NUM_TYPE

																										,row_num_type	ROW_TEXT_TYPE);

		IS

		BEGIN

				FORALL	i	IN	1..10

						INSERT	INTO	test	(row_num,	row_text)

						VALUES	(row_num_tab(i),row_num_type(i));

		END	populate_test;

		PROCEDURE	update_test	(row_num_tab		ROW_NUM_TYPE

																								,row_num_type	ROW_TEXT_TYPE);

		IS

		BEGIN

				FORALL	i	IN	1..10

						UPDATE	test

									SET	row_text	=	row_num_type(i)

						WHERE	row_num	=	row_num_tab(i);

		END	update_test;

		PROCEDURE	delete_test	(row_num_tab	ROW_NUM_TYPE)

		IS

		BEGIN

				FORALL	i	IN	1..10

						DELETE	from	test

							WHERE	row_num	=	row_num_tab(i);

		END	delete_test;

		PROCEDURE	populate_test_rec	(row_num_val	IN	NUMBER

																														,test_rec			OUT	REC_TYPE)

		IS

		BEGIN

				SELECT	*

						INTO	test_rec

						FROM	test

					WHERE	row_num	=	row_num_val;

		END	populate_test_rec;

END	test_adm_pkg;

/

This	version	of	the	package	contains	definitions	of	the	user-defined	record	type,
rec_type,	and	a	new	procedure,	POPULATE_TEST_REC,	that	selects	a	record	from
the	TEST	table	into	the	test_rec	parameter	based	on	the	row_num	value	provided	at
run	time.	Note	the	IN	and	OUT	parameter	modes	specified	in	the

POPULATE_TEST_REC	procedure	header:	They	denote	that	the	row_num_val
parameter	is	used	to	pass	a	value	into	the	procedure,	and	that	the	test_rec	parameter	is
used	to	pass	a	value	from	the	procedure.	(Parameter	modes	are	covered	in	detail	in
Chapters	19	through	21.)

The	next	example	uses	the	newly	created	record	type	and	procedure	to	display	a	record
from	the	TEST	table.

For	Example		ch18_12a.sql
Click	here	to	view	code	image

DECLARE

		test_rec	test_adm_pkg.rec_type;

		v_dyn_sql	VARCHAR2(1000);

BEGIN

		—	Select	record	from	the	TEST	table

		v_dyn_sql	:=	‘begin	test_adm_pkg.populate_test_rec	(:val,	:rec);	end;’;

		EXECUTE	IMMEDIATE	v_dyn_sql	USING	IN	10,	OUT	test_rec;

		COMMIT;

		—	Display	newly	selected	record

		DBMS_OUTPUT.PUT_LINE	(‘test_rec.row_num		=	‘||test_rec.row_num);

		DBMS_OUTPUT.PUT_LINE	(‘test_rec.row_text	=	‘||test_rec.row_text);

END;

In	this	example,	the	USING	clause	in	the	EXECUTE	IMMEDIATE	statement	contains
parameter	modes.	This	is	done	to	ensure	that	the	variables	used	by	the	EXECUTE
IMMEDIATE	statement	have	the	same	modes	as	the	parameters	in	the	procedure.	When
run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

test_rec.row_num		=	10

test_rec.row_text	=	row	10

Binding	Collections	with	OPEN-FOR,	FETCH,	and	CLOSE
Statements
Recall	that	the	OPEN-FOR,	FETCH,	and	CLOSE	statements	are	used	with	multirow	queries
or	cursors.	This	is	illustrated	by	the	example	below.

For	Example		ch18_13a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	student_cur_typ	IS	REF	CURSOR;

		student_cur	student_cur_typ;

		student_rec	student%ROWTYPE;

		v_zip_code	student.zip%TYPE	:=	‘06820’;

BEGIN

		OPEN	student_cur

			FOR	‘SELECT	*	FROM	student	WHERE	zip	=	:my_zip’	USING	v_zip_code;

		LOOP

				FETCH	student_cur	INTO	student_rec;

				EXIT	WHEN	student_cur%NOTFOUND;

				—	Display	student	ID,	first	and	last	names

				DBMS_OUTPUT.PUT_LINE	(‘student_rec.student_id	=

‘||student_rec.student_id);

				DBMS_OUTPUT.PUT_LINE	(‘student_rec.first_name	=

‘||student_rec.first_name);

				DBMS_OUTPUT.PUT_LINE

(‘student_rec.last_name		=	’||student_rec.last_name);

		END	LOOP;

		CLOSE	student_cur;

END;

The	declaration	portion	of	this	script	specifies	the	cursor	type,	student_cur_typ,
defined	as	REF	CURSOR,	and	a	cursor	variable,	student_cur,	based	on	this	type.
Next,	it	defines	a	record	variable,	student_rec,	based	on	the	STUDENT	table.

The	executable	portion	of	the	script	associates	the	SELECT	statement	with	the
STUDENT	table	for	a	given	ZIP	code	with	the	student_cur	variable	and	opens	it.
Next,	each	row	returned	by	the	SELECT	statement	is	fetched	into	the	student_rec
variable	and	the	student’s	ID,	first	name,	and	last	name	are	displayed	on	the	screen.	Once
all	the	records	returned	by	the	SELECT	statement	are	fetched,	the	cursor	terminates.

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

student_rec.student_id	=	240

student_rec.first_name	=	Z.A.

student_rec.last_name		=	Scrittorale

student_rec.student_id	=	326

student_rec.first_name	=	Piotr

student_rec.last_name		=	Padel

student_rec.student_id	=	360

student_rec.first_name	=	Calvin

student_rec.last_name		=	Kiraly

Next,	consider	a	modified	version	of	this	example	where	all	student	records	for	a	given
ZIP	code	are	fetched	at	once	into	a	collection	of	records.	Recall	that	to	bind	a	collection	or
a	record	type,	the	following	restriction	must	be	respected:	The	collection	or	record	data
type	must	be	declared	in	the	package	specification.	To	comply	with	this	rule,	the
STUDENT_ADM_PKG	package	shown	in	Listing	18.5	is	created	specifically	for	this
purpose.

Listing	18.5	STUDENT_ADM_PKG	Package	with	Record	and	Collection	Types
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	student_adm_pkg

AS

		—	Define	collection	type

		TYPE	student_tab_type	IS	TABLE	OF	student%ROWTYPE	INDEX	BY	PLS_INTEGER;

		—	Define	procedures

		PROCEDURE	populate_student_tab	(zip_code						IN	VARCHAR2

																																	,student_tab	OUT	student_tab_type);

		PROCEDURE	display_student_info	(student_rec	student%ROWTYPE);

END	student_adm_pkg;

/

CREATE	OR	REPLACE	PACKAGE	BODY	student_adm_pkg

AS

		PROCEDURE	populate_student_tab	(zip_code					IN	VARCHAR2

																																	,student_tab	OUT	student_tab_type)

		IS

		BEGIN

				SELECT	*

						BULK	COLLECT	INTO	student_tab

						FROM	student

					WHERE	zip	=	zip_code;

		END	populate_student_tab;

		PROCEDURE	display_student_info	(student_rec	student%ROWTYPE)

		IS

		BEGIN

				DBMS_OUTPUT.PUT_LINE	(‘student_rec.zip	=								’||student_rec.zip);

				DBMS_OUTPUT.PUT_LINE	(‘student_rec.student_id	=

‘||student_rec.student_id);

				DBMS_OUTPUT.PUT_LINE	(‘student_rec.first_name	=

‘||student_rec.first_name);

				DBMS_OUTPUT.PUT_LINE	(‘student_rec.last_name		=

‘||student_rec.last_name);

		END	display_student_info;

END	student_adm_pkg;

/

The	package	specification	declares	the	associative	array	type,	student_tab_type,
where	each	element	of	the	collection	is	a	record	of	the	student%ROWTYPE.	Next,	it
declares	the	populate_student_tab	procedure,	which	accepts	the	value	of	a	ZIP
code	and	returns	a	collection	of	records,	student_tab,	populated	via	the	BULK
COLLECT	INTO	statement.	Note	the	parameter	modes	specified	in	the	procedure
declaration.	The	zip_code	is	specified	as	an	IN	parameter.	Based	on	its	value,	the	OUT
parameter	student_tab	is	populated	via	the	SELECT	statement	from	the	STUDENT
table.

The	second	procedure,	display_student_info,	accepts	one	input	parameter,
student_rec	based	on	the	STUDENT	table	and	displays	the	student’s	ZIP	code,	ID,
first	name,	and	last	name	on	the	screen.

The	package	body	contains	the	executable	code	of	the	populate_student_tab
and	display_student_info	procedures.

The	following	modified	version	of	example	ch18_13a.sql	employs	this	newly	created
package.	References	to	packages	objects	are	highlighted	in	bold.

For	Example		ch18_13b.sql

Click	here	to	view	code	image

DECLARE

		TYPE	student_cur_typ	IS	REF	CURSOR;

		student_cur	student_cur_typ;

		—	Collection	and	record	variables

		student_tab	student_adm_pkg.student_tab_type;

		student_rec	student%ROWTYPE;

BEGIN

		—	Populate	collection	of	records

		student_adm_pkg.populate_student_tab	(‘06820’,	student_tab);

		OPEN	student_cur

			FOR	‘SELECT	*	FROM	TABLE(:my_table)’	USING	student_tab;

		LOOP

				FETCH	student_cur	INTO	student_rec;

				EXIT	WHEN	student_cur%NOTFOUND;

				student_adm_pkg.display_student_info	(student_rec);

		END	LOOP;

		CLOSE	student_cur;

END;

This	version	of	the	script	declares	a	collection	of	records,	student_tab,	based	on	the
collection	type	defined	in	the	STUDENT_ADM_PKG	package.	The	execution	section	of	the
script	populates	the	student_tab	collection	with	the	records	from	the	STUDENT	table
for	a	particular	ZIP	code.	This	is	accomplished	by	calling	the
populate_student_tab	procedure	defined	in	the	STUDENT_ADM_PKG	package.
Next,	the	student	records	are	selected	from	the	newly	populated	student_tab
collection.	Note	the	usage	of	the	built-in	TABLE	function	in	the	SELECT	statement.

Did	You	Know?

The	TABLE	function	allows	you	to	query	a	collection	like	a	physical	database
table.	Essentially,	it	accepts	a	collection	as	its	input	parameter	and	returns	the
appropriate	result	set	based	on	the	SELECT	statement.	Note	that	an	input
parameter	can	also	be	a	REF	CURSOR.

When	run,	this	version	of	the	script	produces	the	following	output:
Click	here	to	view	code	image

student_rec.zip								=	06820

student_rec.student_id	=	240

student_rec.first_name	=	Z.A.

student_rec.last_name		=	Scrittorale

student_rec.zip								=	06820

student_rec.student_id	=	326

student_rec.first_name	=	Piotr

student_rec.last_name		=	Padel

student_rec.zip								=	06820

student_rec.student_id	=	360

student_rec.first_name	=	Calvin

student_rec.last_name		=	Kiraly

Summary
In	this	chapter,	you	learned	how	to	optimize	PL/SQL	code	with	features	known	as	bulk
SQL.	Fundamentally,	you	discovered	how	to	batch	SQL	statements	and	their	results	so	as
to	minimize	the	performance	overhead	associated	with	the	number	of	context	switches
between	the	PL/SQL	and	SQL	engines.	Specifically,	you	learned	about	the	FORALL
statement	and	the	BULK	COLLECT	clause.	In	addition,	you	learned	that	starting	with
Oracle	12c,	you	can	employ	bulk	SQL	and	collection	data	types	along	with	dynamic	SQL.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

19.	Procedures

In	this	chapter,	you	will	learn	about

	Creating	Procedures

	Passing	Parameters	IN	and	OUT	of	Procedures

All	the	PL/SQL	that	you	have	written	up	to	this	point	has	been	anonymous	blocks	that
were	run	as	scripts	and	compiled	by	the	database	server	at	run	time.	Now	you	will	begin	to
use	modular	code.	Modular	code	is	a	methodology	to	build	a	program	from	distinct	parts
(modules),	each	of	which	performs	a	specific	function	or	task	toward	the	final	objective	of
the	program.	Once	modular	code	is	stored	on	the	database	server,	it	becomes	a	database
object,	or	subprogram,	that	is	available	to	other	program	units	for	repeated	execution.	To
save	code	into	the	database,	the	source	code	needs	to	be	sent	to	the	server	so	that	it	can	be
compiled	into	p-code	and	stored	in	the	database.	This	process	will	be	covered	in	the
following	three	chapters.	This	chapter	is	short:	It	simply	introduces	stored	procedures.
Chapter	20	covers	the	basics	of	stored	functions,	and	Chapter	21	is	a	lengthy	chapter	that
pulls	all	the	material	together	to	cover	packages.

In	the	first	lab	of	this	chapter,	you	will	learn	more	about	stored	code	and	discover	how
to	write	one	type	of	stored	code	known	as	procedures.	In	the	second	lab,	you	will	learn
about	passing	parameters	into	and	out	of	procedures.	Prior	to	covering	the	details	of	stored
procedures,	you	will	be	introduced	to	the	benefits	of	module	code.

Benefits	of	Modular	Code
A	PL/SQL	module	is	any	complete	logical	unit	of	work.	There	are	five	types	of	PL/SQL
modules:	(1)	anonymous	blocks	that	are	run	with	a	text	script	(the	type	you	have	used
until	now),	(2)	procedures,	(3)	functions,	(4)	packages,	and	(5)	triggers.	There	are	two
main	benefits	to	using	modular	code:	(1)	It	is	more	reusable	and	(2)	it	is	more	manageable.

You	create	a	procedure	either	in	SQL*Plus	or	in	one	of	the	many	tools	for	creating	and
debugging	stored	PL/SQL	code.	If	you	are	using	SQL*Plus,	you	will	need	to	write	your
code	in	a	text	editor	and	then	run	it	at	the	SQL*Plus	prompt.

Block	Structure
The	same	block	structure	is	used	for	all	the	module	types.	The	block	begins	with	a	header
(for	named	blocks	only),	which	consists	of	(1)	the	name	of	the	module	and	(2)	a	parameter
list	(if	used).

The	declaration	section	defines	variables,	cursors,	and	sub-blocks	that	will	be	needed	in
the	next	section.

The	main	part	of	the	module	is	the	execution	section,	where	all	of	the	calculations	and
processing	are	performed.	This	will	contain	executable	code	such	as	IF-THEN-ELSE
statements,	loops,	calls	to	other	PL/SQL	modules,	and	so	on.

The	last	section	of	the	module	is	an	optional	exception	handler,	which	contains	the	code
to	handle	exceptions.

Anonymous	Blocks
Until	this	chapter,	you	have	written	only	anonymous	blocks.	Anonymous	blocks	are	very
much	like	modules,	except	that	anonymous	blocks	do	not	have	headers.	There	are
important	distinctions,	though.	As	the	name	implies,	anonymous	blocks	have	no	names
and,	therefore,	cannot	be	called	by	another	block.	They	are	not	stored	in	the	database	and
must	be	compiled	and	then	run	each	time	the	script	is	loaded.

The	PL/SQL	block	in	a	subprogram	is	a	named	block	that	can	accept	parameters	and
can	be	invoked	from	an	application	that	can	communicate	with	the	Oracle	database	server.
A	subprogram	can	be	compiled	and	stored	in	the	database.	This	allows	the	programmer	to
reuse	the	program.	It	also	provides	for	easier	maintenance	of	code.	Subprograms	may	be
either	procedures	or	functions.

Lab	19.1:	Creating	Procedures

After	this	lab,	you	will	be	able	to

	Put	Procedure	Creation	Syntax	into	Practice

	Query	the	Data	Dictionary	for	Information	on	Procedures

A	procedure	is	a	module	performing	one	or	more	actions;	it	does	not	need	to	return	any
values.	The	syntax	for	creating	a	procedure	is	as	follows:
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	name

		[(parameter[,	parameter,	…])]

AS

		[local	declarations]

BEGIN

		executable	statements

[EXCEPTION

		exception	handlers]

END	[name];

A	procedure	may	have	zero	to	many	parameters	(this	topic	is	covered	in	Lab	19.2).
Every	procedure	has	two	parts:	(1)	the	header	portion,	which	comes	before	the	AS	(or
sometimes	IS—they	are	interchangeable)	keyword	and	contains	the	procedure	name	and
the	parameter	list,	and	(2)	the	body,	which	is	everything	after	the	AS	(IS)	keyword.	The
word	REPLACE	is	optional.	When	this	keyword	is	not	included	in	the	header	of	the
procedure,	to	change	the	code	in	the	procedure,	you	must	first	drop	the	procedure	and	then
recreate	it.	Because	it	is	very	common	to	change	the	code	of	the	procedure,	especially
when	it	is	under	development,	it	is	strongly	recommended	that	you	use	the	OR	REPLACE
option.

Putting	Procedure	Creation	Syntax	into	Practice
The	following	script	demonstrates	the	syntax	for	creating	a	procedure.	When	this	script	is
run,	it	creates	a	procedure	named	Discount	that	is	compiled	into	p-code	and	stored	in
the	database	for	later	execution.

For	Example		ch19_1.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	Discount

AS

		CURSOR	c_group_discount

		IS

				SELECT	distinct	s.course_no,	c.description

						FROM	section	s,	enrollment	e,	course	c

					WHERE	s.section_id	=	e.section_id

							AND	c.course_no	=	s.course_no

					GROUP	BY	s.course_no,	c.description,

														e.section_id,	s.section_id

				HAVING	COUNT(*)	>=8;

BEGIN

				FOR	r_group_discount	IN	c_group_discount

				LOOP

								UPDATE	course

											SET	cost	=	cost	*	.95

									WHERE	course_no	=	r_group_discount.course_no;

								DBMS_OUTPUT.PUT_LINE

										(‘A	5%	discount	has	been	given	to	‘||

											r_group_discount.course_no||’	‘||

											r_group_discount.description

);

				END	LOOP;

END;

To	execute	the	stored	procedure	Discount,	the	following	syntax	is	used:
EXECUTE	Procedure_name

Executing	the	Discount	procedure	yields	the	following	result:
Click	here	to	view	code	image

5%	discount	has	been	given	to	25		Adv.	Word	Perfect

….	(through	each	course	with	an	enrollment	over	8)

PL/SQL	procedure	successfully	completed.

There	is	no	COMMIT	in	this	procedure,	which	means	the	procedure	will	not	update	the
database.	A	COMMIT	command	needs	to	be	issued	after	the	procedure	is	run,	if	you	want
the	changes	to	be	made.	Alternatively,	you	can	enter	a	COMMIT	command	either	before	or
after	the	end	loop.	If	you	put	the	COMMIT	statement	before	the	end	loop,	then	you	are
committing	changes	after	every	loop.	If	you	put	the	COMMIT	statement	after	the	end	loop,
then	the	changes	will	not	be	committed	until	after	the	procedure	is	near	completion.	It	is
wiser	to	follow	the	second	option,	as	it	leaves	you	better	prepared	for	handling	errors.

By	the	Way

If	you	receive	an	error	in	SQL*Plus,	type	the	following	command:
Show	error

You	can	also	add	to	the	command,
Click	here	to	view	code	image

L	start_line_number	end_line_number

to	see	a	portion	of	the	code	and	isolate	errors.

Querying	the	Data	Dictionary	for	Information	on
Procedures
Two	main	views	in	the	data	dictionary	provide	information	on	stored	code:	the
USER_OBJECTS	view,	which	gives	information	about	the	objects,	and	the
USER_SOURCE	view,	which	gives	the	text	of	the	source	code.	The	data	dictionary	also
has	ALL_	and	DBA_	versions	of	these	views.

The	following	SELECT	statement	gets	pertinent	information	from	the
USER_OBJECTS	view	about	the	Discount	procedure	you	just	wrote:
Click	here	to	view	code	image

SELECT	object_name,	object_type,	status

		FROM	user_objects

	WHERE	object_name	=	‘DISCOUNT’;

The	result	would	be	the	following,	assuming	the	only	object	in	the	database	is	the	new
Discount	procedure:
Click	here	to	view	code	image

OBJECT_NAME						OBJECT_TYPE				STATUS

–––––-	––––-		––

DISCOUNT									PROCEDURE						VALID

The	status	indicates	where	the	procedure	was	compiled	successfully.	An	invalid	procedure
cannot	be	executed.

The	following	SELECT	statement	displays	the	source	code	from	the	USER_SOURCE
view	for	the	Discount	procedure:
Click	here	to	view	code	image

SELECT	TO_CHAR(line,	99)||’>’,	text

		FROM	user_source

	WHERE	name	=	‘DISCOUNT’

Stored	procedures	in	the	database	can	also	be	seen	in	Oracle	SQL	Developer.	If	you
expand	the	nodes	under	the	appropriate	database	connection,	you	will	see	under	the
Procedure	node	all	procedures	in	the	database	for	the	user	specified	in	the	database
connection.	The	node	will	show	both	valid	and	invalid	procedures.	Figure	19.1,	for
instance,	shows	the	valid	Discount	procedure.	The	default	tab	that	opens	shows	the
code;	the	code	can	be	modified	and	recompiled	in	this	tab.	Additionally,	tabs	on	grants	and

dependencies	are	available.	If	the	procedure	was	invalid,	it	will	have	a	red	X	next	to	it.
There	is	also	a	tool	in	Oracle	SQL	Developer	that	can	be	utilized	to	write	new	procedures,
which	can	be	accessed	by	right-clicking	on	the	Procedure	node.

Figure	19.1	Discount	Procedure	Seen	in	Oracle	SQL	Developer

By	the	Way

A	procedure	can	become	invalid	if	the	table	it	is	based	on	is	deleted	or
changed.	You	can	recompile	an	invalid	procedure	with	the	following
command:
Click	here	to	view	code	image

alter	procedure	procedure_name	compile

Lab	19.2:	Passing	Parameters	IN	and	OUT	of	Procedures

After	this	lab,	you	will	be	able	to

	Use	IN	and	OUT	Parameters	with	Procedures

Using	IN	and	OUT	Parameters	with	Procedures
Parameters	are	the	means	to	pass	values	from	the	calling	environment	to	the	server,	and
vice	versa.	These	values	are	processed	or	returned	via	the	execution	of	the	procedure.
There	are	three	parameter	modes:	IN,	OUT,	and	IN	OUT.

Modes

Modes	specify	whether	the	parameter	passed	is	read	in	or	acts	as	a	receptacle	for	what
comes	out.	Figure	19.2	illustrates	the	relationship	between	the	parameters	when	they	are	in
the	procedure	header	versus	when	the	procedure	is	executed.

Figure	19.2	Matching	a	Procedure	Call	to	a	Procedure	Header

Formal	and	Actual	Parameters

Formal	parameters	are	the	names	specified	within	parentheses	as	part	of	the	header	of	a
module.	Actual	parameters	are	the	value	expressions	specified	within	parentheses	as	a
parameter	list	when	a	call	is	made	to	the	module.	The	formal	parameter	and	the	related
actual	parameter	must	be	of	the	same	or	compatible	data	types.	Table	19.1	explains	the
three	types	of	parameters.

Table	19.1	Three	Types	of	Parameters

Passing	of	Constraints	(Data	Types)	with	Parameter	Values

Formal	parameters	do	not	require	constraints	on	the	data	type.	For	example,	instead	of
specifying	a	constraint	such	as	VARCHAR2(60),	you	can	just	issue	VARCHAR2	against
the	parameter	name	in	the	formal	parameter	list.	The	constraint	is	passed	with	the	value
when	a	call	is	made.

Matching	Actual	and	Formal	Parameters

Two	methods	can	be	used	to	match	actual	and	formal	parameters:	positional	notation	and
named	notation.	Positional	notation	is	simply	association	by	position;	that	is,	the	order	of
the	parameters	used	when	executing	the	procedure	matches	the	order	in	the	procedure’s
header	exactly.	Named	notation	is	explicit	association	using	the	symbol	=>.	It	has	the
following	syntax:
Click	here	to	view	code	image

formal_parameter_name	=>	argument_value

In	named	notation,	the	order	does	not	matter.	If	you	mix	notation,	however,	you	should
list	the	positional	notation	before	the	named	notation.

Default	values	can	be	used	if	a	call	to	the	program	does	not	include	a	value	in	the
parameter	list.	Note	that	it	makes	no	difference	which	style	is	used;	both	work	in	similar
fashion.

For	Example		ch19_2.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	find_sname

		(i_student_id	IN	NUMBER,

			o_first_name	OUT	VARCHAR2,

			o_last_name	OUT	VARCHAR2

)

AS

BEGIN

		SELECT	first_name,	last_name

				INTO	o_first_name,	o_last_name

				FROM	student

			WHERE	student_id	=	i_student_id;

EXCEPTION

		WHEN	OTHERS

		THEN

			DBMS_OUTPUT.PUT_LINE(‘Error	in	finding	student_id:

				’||i_student_id);

END	find_sname;

This	procedure	takes	in	a	student_id	via	the	parameter	named	i_student_id.	It
passes	out	the	parameters	o_first_name	and	o_last_name.	The	procedure	is	a
simple	SELECT	statement	that	retrieves	the	first_name	and	last_name	from	the
STUDENT	table	when	the	student_id	matches	the	value	of	i_student_id,	which	is
the	only	IN	parameter	that	exists	in	the	procedure.	To	call	the	procedure,	a	value	must	be
passed	in	for	the	i_student_id	parameter.

For	Example		ch19_3.sql

Click	here	to	view	code	image

DECLARE

		v_local_first_name	student.first_name%TYPE;

		v_local_last_name	student.last_name%TYPE;

BEGIN

		find_sname

				(145,	v_local_first_name,	v_local_last_name);

		DBMS_OUTPUT.PUT_LINE

				(‘Student	145	is:	‘||v_local_first_name||

					’	‘||	v_local_last_name||’.’

);

END;

When	calling	the	procedure	find_sname,	a	valid	student_id	should	be	passed	in
for	the	i_student_id.	If	it	is	not	a	valid	student_id,	an	exception	will	be	raised.
Two	variables	must	also	be	listed	when	calling	the	procedure.	These	variables,
v_local_first_name	and	v_local_last_name,	are	used	to	hold	the	values	of
the	parameters	that	are	being	passed	out.	After	the	procedure	has	been	executed,	the	local
variables	will	have	values	and	can	then	be	displayed	with	a	DBMS_OUTPUT.PUT_LINE
statement.

Summary
In	this	chapter,	you	learned	how	to	create	procedures.	First,	you	saw	how	to	create	a	basic
procedure	that	has	no	parameters.	Then,	in	the	second	part	of	the	chapter,	you	saw	how	to
add	parameters	to	the	procedure	to	narrow	the	transaction	process	taking	place	within	that
procedure.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

20.	Functions

In	this	chapter,	you	will	learn	about

	Creating	Functions

	Using	Functions	in	SQL	Statements

	Optimizing	Function	Execution	in	SQL

A	function	that	is	stored	in	the	database	is	much	like	a	procedure,	in	that	it	is	a	named
PL/SQL	block	that	can	take	parameters	and	be	invoked.	There	are	key	differences	both	in
the	way	it	is	created	and	how	it	is	used,	however.	In	this	short	chapter,	you	will	learn	the
basics	of	how	to	create,	use,	and	drop	a	function.	In	Chapter	21,	you	will	learn	how	to
extend	functions	when	they	are	placed	into	packages.

Lab	20.1:	Creating	Functions

After	this	lab,	you	will	be	able	to

	Create	Stored	Functions

	Make	Use	of	Functions

Functions	are	another	type	of	stored	code	and	are	very	similar	to	procedures.	The
significant	difference	between	the	two	is	that	a	function	is	a	PL/SQL	block	that	returns	a
single	value.	Functions	can	accept	one,	many,	or	no	parameters,	but	they	must	have	a
return	clause	in	their	execution	section.	The	data	type	of	the	return	value	must	be	declared
in	the	header	of	the	function.	A	function	is	not	a	stand-alone	executable	in	the	same	way
that	a	procedure	is;	that	is,	a	function	must	always	be	used	in	some	context.	You	can	think
of	it	as	equivalent	to	a	sentence	fragment.	A	function	produces	output	that	needs	to	be
assigned	to	a	variable,	or	it	can	be	used	in	a	SELECT	statement.

Creating	Stored	Functions
This	section	covers	the	basic	function	syntax	and	demonstrates	how	to	create	a	function.
The	syntax	for	creating	a	function	is	as	follows:
Click	here	to	view	code	image

CREATE	[OR	REPLACE]	FUNCTION	function_name

	(parameter	list)

		RETURN	datatype

IS

BEGIN

		<body>

		RETURN	(return_value);

END;

The	function	does	not	necessarily	have	any	parameters,	but	it	must	have	a	RETURN
value	declared	in	the	header,	and	it	must	return	values	for	all	of	the	possible	execution

streams.	The	RETURN	statement	does	not	have	to	appear	as	the	last	line	of	the	main
execution	section,	and	there	may	be	more	than	one	RETURN	statement	(there	should	be	a
RETURN	statement	for	each	exception).	A	function	may	have	IN,	OUT,	or	IN	OUT
parameters—although	you	will	rarely	see	anything	except	IN	parameters,	because	it	is	bad
programming	practice	to	use	the	other	parameters.

The	following	example	shows	the	script	for	creating	a	function	named
show_description.

For	Example		ch20_1.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	FUNCTION	show_description

		(i_course_no	course.course_no%TYPE)

RETURN	varchar2

AS

		v_description	varchar2(50);

BEGIN

		SELECT	description

				INTO	v_description

				FROM	course

			WHERE	course_no	=	i_course_no;

		RETURN	v_description;

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				RETURN(‘The	Course	is	not	in	the	database’);

		WHEN	OTHERS

		THEN

				RETURN(‘Error	in	running	show_description’);

END;

When	the	function	has	been	created	in	SQL	Developer,	the	following	message	will	be
displayed	in	the	script	editor:
Click	here	to	view	code	image

FUNCTION	SHOW_DESCRIPTION	compiled

This	message	indicates	that	the	function	was	successfully	compiled.	It	can	also	been	seen
in	the	Function	node	of	the	Database	Objects	in	SQL	Developer.	See	Figure	20.1.

Figure	20.1	Show_Description	Function	as	seen	in	SQL	Developer

The	example’s	function	heading	indicates	that	the	function	takes	in	a	parameter	of	the
number	data	type	and	returns	a	VARCHAR2.	The	function	makes	use	of	a	VARCHAR2(5)
variable	called	v_description.	It	gives	this	variable	the	value	of	the	description	of	the
course,	whose	number	is	passed	into	the	function.	The	return	value	is	then	the	variable.

There	are	two	exceptions	in	the	function.	The	first	is	the	WHEN	NO_DATA_FOUND
exception,	which	is	the	one	most	likely	to	occur.	The	second	exception,	WHEN	OTHERS,
which	is	used	as	a	catchall	for	any	other	error	that	may	occur.

The	RETURN	clause	is	one	of	the	last	statements	in	the	function.	The	reason	for	this
positioning	is	that	the	program	focus	will	return	to	the	calling	environment	once	the
RETURN	clause	is	issued.

The	following	example	demonstrates	the	syntax	for	creating	a	function	named
id_is_good.	The	output	returned	in	this	example	is	a	Boolean	value.

For	Example		ch20_2.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	FUNCTION	id_is_good

		(i_student_id	IN	NUMBER)

		RETURN	BOOLEAN

AS

		v_id_cnt	NUMBER;

BEGIN

		SELECT	COUNT(*)

				INTO	v_id_cnt

				FROM	student

			WHERE	student_id	=	i_student_id;

		RETURN	1	=	v_id_cnt;

EXCEPTION

		WHEN	OTHERS

		THEN

				RETURN	FALSE;

END	id_is_good;

The	function	id_is_good	checks	whether	the	ID	passed	in	exists	in	the	database.	It
takes	in	a	number	(which	is	assumed	to	be	a	student	ID)	and	returns	a	BOOLEAN	value.
The	function	uses	the	variable	v_id_cnt	as	a	means	to	process	the	data.	The	SELECT
statement	obtains	a	count	of	the	number	of	students	with	the	numeric	value	that	was
passed	in.	If	a	student	is	found	in	the	database,	using	the	student_id	as	the	primary
key,	the	value	of	v_id_cnt	will	be	1.	If	the	student	is	not	in	the	database,	the	SELECT
statement	passes	the	focus	to	the	exception-handling	section,	where	the	function	returns	a
value	of	FALSE.	The	function	makes	use	of	a	very	interesting	method	to	return	TRUE.	If
the	student	is	in	the	database,	then	v_id_cnt	will	equal	1,	so	the	code	RETURN	1	=
v_id_cnt	will	actually	return	a	value	of	TRUE.

Making	Use	of	Functions
This	section	demonstrates	how	to	make	use	of	the	stored	function	show_description
that	was	created	in	the	last	section.	The	following	example	demonstrates	how	to	call	the
stored	function	show_description	in	a	PL/SQL	block.

For	Example		ch20_3.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_description	VARCHAR2(50);

BEGIN

		v_description	:=	show_description(&sv_cnumber);

		DBMS_OUTPUT.PUT_LINE(v_description);

END;

A	lexical	parameter	in	the	PL/SQL	block	of	&cnumber	causes	the	user	to	be	prompted
as	follows:

Enter	value	for	cnumber:

In	SQL	Developer,	a	pop-up	window	will	be	displayed,	which	requests	that	the	user
enter	a	value	for	the	substitution	variable,	as	shown	in	Figure	20.2.

Figure	20.2	Enter	Substitution	Dialog	Box	in	SQL	Developer

If	you	enter	“350,”	you	will	see	“Java	Developer	II”	in	the	DBMS	Output	window	of
SQL	Developer.	In	the	Script	Output	window,	you	will	see	the	old	version	of	the	script
with	the	substitution	variable	&sv_cnumber	and	then	you	will	see	the	new	version	of
the	script	where	the	substitution	variable	&sv_cnumber	has	been	replaced	by	350.	See
Figure	20.3.

Figure	20.3	Execution	of	Function	Show_Description

When	this	script	is	run	in	SQL*Plus,	you	will	see	the	following	output:
Click	here	to	view	code	image

old		4:		v_descript	:=	show_description();

new		4:		v_descript	:=	show_description(350);

Java	Developer	II

PL/SQL	procedure	successfully	completed.

This	message	means	that	the	value	for	&sv_cnumber	has	been	replaced	with	350.	The
function	show_description	returns	a	VARCHAR2	value,	which	is	the	course
description	for	the	course	number	that	is	passed	in.	The	PL/SQL	block	initializes	the	value
of	v_description	with	the	value	returned	by	the	show_description	function.
This	value	is	then	displayed	with	the	DBMS_OUTPUT	package.

The	following	example	is	an	anonymous	block	that	makes	use	of	the	function
id_is_good.

For	Example		ch20_4.sql
Click	here	to	view	code	image

DECLARE

		V_id	number;

BEGIN

		V_id	:=	&id;

		IF	id_is_good(v_id)

		THEN

				DBMS_OUTPUT.PUT_LINE

						(‘Student	ID:	‘||v_id||’	is	a	valid.’);

		ELSE

				DBMS_OUTPUT.PUT_LINE

						(‘Student	ID:	‘||v_id||’	is	not	valid.’);

		END	IF;

END;

This	PL/SQL	block	evaluates	the	return	from	the	function	and	then	determines	which
output	to	project.	Because	the	function	id_is_good	returns	a	Boolean	value,	the	easiest
way	to	make	use	of	this	function	is	to	run	it	and	use	the	result	(which	will	be	either	TRUE
or	FALSE)	in	an	IF	statement.	When	testing	the	Boolean	function	id_is_good,	the	line
IF	id_is_good(v_id)	means	that	if	the	function	id_is_good	for	the	variable
results	in	a	return	of	TRUE,	another	set	of	statements	will	be	executed.	The	ELSE	clause
covers	what	will	happen	if	the	function	returns	FALSE.

Lab	20.2:	Using	Functions	in	SQL	Statements

After	this	lab,	you	will	be	able	to

	Invoke	Functions	in	SQL	Statements

	Write	Complex	Functions

Invoking	Functions	in	SQL	Statements
Functions	return	a	single	value	and	can	be	very	useful	in	a	SELECT	statement.	In
particular,	they	can	help	you	avoid	repeated	complex	SQL	statements	within	a	SELECT
statement.	The	following	statement	demonstrates	the	use	of	the	show_description
function	in	a	SELECT	statement	for	every	course	in	the	COURSE	table:
Click	here	to	view	code	image

SELECT	course_no,	show_description(course_no)

		FROM	course;

It	is	identical	to	the	following	SELECT	statement:
Click	here	to	view	code	image

SELECT	course_no,	description

		FROM	course;

Functions	can	also	be	used	in	a	SQL	statement.	In	fact,	you	have	been	using	them	all
along;	you	just	might	not	have	realized	it.	As	a	simple	example,	imagine	using	the
function	UPPER	in	a	SELECT	statement:
Click	here	to	view	code	image

SELECT	UPPER(‘bill’)	FROM	DUAL;

The	Oracle-supplied	function	UPPER	returns	the	uppercase	value	of	the	parameter	that
was	passed	in.

For	a	user-defined	function	to	be	called	in	a	SQL	expression,	it	must	be	a	ROW	function,
not	a	GROUP	function,	and	the	data	types	must	be	SQL	data	types.	The	data	types	cannot
be	PL/SQL	data	types	like	a	Boolean	value,	table,	or	record.	Additionally,	the	function	is
not	allowed	to	include	any	DML	statements	(INSERT,	UPDATE,	DELETE).

To	use	a	function	in	a	SQL	SELECT	statement,	the	function	must	have	a	certain	level	of
purity,	which	is	accomplished	with	the	PRAGMA	RESTRICT_REFERENCES	clause.	This
topic	is	discussed	in	detail	in	Chapter	21	in	the	context	of	functions	within	packages.

Writing	Complex	Functions
This	section	introduces	a	more	complex	function	that	will	be	used	in	Chapter	21	on
packages.	As	the	following	example	demonstrates,	functions	can	become	very	elaborate
and	complex.

For	Example		ch20_5.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	FUNCTION	new_instructor_id

		RETURN	instructor.instructor_id%TYPE

AS

		v_new_instid	instructor.instructor_id%TYPE;

BEGIN

		SELECT	INSTRUCTOR_ID_SEQ.NEXTVAL

				INTO	v_new_instid

				FROM	dual;

		RETURN	v_new_instid;

EXCEPTION

		WHEN	OTHERS

		THEN

				DECLARE

						v_sqlerrm	VARCHAR2(250)

								:=	SUBSTR(SQLERRM,1,250);

				BEGIN

						RAISE_APPLICATION_ERROR(-20003,

									‘Error	in				instructor_id:	‘||v_sqlerrm);

			END;

END	new_instructor_id;

This	is	a	function	that	generates	a	new	instructor	ID.	If	the	sequence	fails	to	generate	a
new	instructor	ID,	then	a	SQL	error	is	returned.

Lab	20.3:	Optimizing	Function	Execution	in	SQL

After	this	lab,	you	will	be	able	to

	Defining	a	Function	Using	the	WITH	Clause

	Create	a	Function	with	the	UDF	Pragma

In	Oracle	12.1,	a	few	new	features	were	introduced	that	allow	for	improved	optimization
of	functions	that	are	used	in	SQL	statements.	In	particular,	function	definition	can	take
place	in	the	same	statement	as	the	SELECT	operation.

Defining	a	Function	Using	the	WITH	Clause
Starting	with	Oracle	Database	12.1,	you	can	define	functions	as	well	as	procedures	within
the	same	SQL	statement	in	which	the	SELECT	statement	appears.	This	alleviates	the
context	switch	between	the	PL/SQL	and	SQL	engines	by	allowing	both	steps	to	take	place
in	the	SQL	engine	and,	in	turn,	provides	for	a	performance	gain.	The	function	or
procedure	needs	to	be	defined	using	the	WITH	clause.	In	previous	versions	of	the	Oracle
platform,	only	subqueries	could	be	defined	in	the	WITH	clause.

The	following	example	demonstrates	how	the	show_description	function,	which
was	developed	earlier	in	this	chapter,	can	be	used	in	the	WITH	clause.	The	function	has
been	renamed	show_descript	to	ensure	that	it	is	not	confused	with	the	previous
version,	show_description.

For	Example		ch20_6.sql
Click	here	to	view	code	image

WITH

		FUNCTION	show_descript

		(i_course_no	course.course_no%TYPE)

RETURN	varchar2

AS

		v_description	varchar2(50);

BEGIN

		SELECT	description

				INTO	v_description

				FROM	course

			WHERE	course_no	=	i_course_no;

		RETURN	v_description;

END;

SELECT	course_no,	show_descript(course_no),	cost

FROM		COURSE

The	WITH	FUNCTION	feature	is	useful	in	many	different	situations.	The	main
downside	to	this	feature	is	that	you	lose	the	benefits	of	a	reusable	function	in	favor	of
obtaining	improved	performance	through	reduced	context	shifts	between	the	SQL	and

PL/SQL	engines.	Before	deciding	which	approach	to	use,	it	is	advisable	to	do	a	cost
analysis	and	weigh	the	benefits	against	the	possible	need	to	reuse	the	function	in	other
contexts.

Creating	a	Function	with	the	UDF	Pragma
Functions	can	be	created	by	adding	the	UDF	pragma	syntax,	which	notifies	the	compiler
that	a	user-defined	function	will	be	used	in	SQL	statements.	A	pragma	is	basically	a	hint	to
the	compiler	that	allows	it	to	optimize	the	function	appropriately.	When	the	UDF	pragma
syntax	is	used,	the	function	will	have	higher	performance	when	used	in	SQL.	Very	little
needs	to	be	done	to	apply	the	pragma,	except	to	add	the	phrase	pragma	UDF	prior	to	the
variable	declaration,	as	shown	in	bold	in	the	following	example:

For	Example		ch20_7.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	FUNCTION	show_description

		(i_course_no	course.course_no%TYPE)

RETURN	varchar2

AS

		pragma	UDF;

		v_description	varchar2(50);

BEGIN

		SELECT	description

				INTO	v_description

				FROM	course

			WHERE	course_no	=	i_course_no;

		RETURN	v_description;

EXCEPTION

		WHEN	NO_DATA_FOUND

		THEN

				RETURN(‘The	Course	is	not	in	the	database’);

		WHEN	OTHERS

		THEN

				RETURN(‘Error	in	running	show_description’);

END;

Summary
In	this	chapter,	you	learned	how	to	create	and	execute	functions.	You	also	learned	how	to
include	functions	in	SQL	statements.	Finally,	you	learned	two	methods	to	optimize
function	execution	in	SQL:	use	of	the	WITH	function	and	use	of	the	pragma	UDF	syntax.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

21.	Packages

In	this	chapter,	you	will	learn	about

	Creating	Packages

	Cursors	Variables

	Extending	the	Package

	Package	Instantiation	and	Initialization

	SERIALLY_REUSABLE	Packages

A	package	is	a	collection	of	PL/SQL	objects	grouped	together	under	one	package	name.
Packages	may	include	procedures,	functions,	cursors,	declarations,	types,	and	variables.
Collecting	objects	into	a	package	has	numerous	benefits.	In	this	chapter,	you	will	learn
what	these	benefits	are	and	how	to	take	advantage	of	them.

Lab	21.1:	Creating	Packages

After	this	lab,	you	will	be	able	to

	Create	Package	Specifications

	Create	Package	Bodies

	Call	Stored	Packages

	Create	Private	Objects

There	are	numerous	benefits	of	using	packages	as	a	method	to	bundle	your	functions	and
procedures,	the	first	being	that	a	well-designed	package	is	a	logical	grouping	of	objects
such	as	functions,	procedures,	global	variables,	and	cursors.	All	of	the	code	(parse	tree	and
pseudocode	[p-code])	is	loaded	into	memory	(shared	global	area	[SGA]	of	the	Oracle
server)	on	the	first	call	of	the	package.	This	means	that	the	first	call	to	the	package	is	very
expensive	(it	involves	a	lot	of	processing	on	the	server),	but	all	subsequent	calls	will	result
in	improved	performance.	For	this	reason,	packages	are	often	used	in	applications	where
procedures	and	functions	are	called	repeatedly.

Example	of	a	Basic	Currency	Conversion

Once	you	have	the	same	calculation	written	in	multiple	places,	you	have	a
large	maintenance	job	every	time	the	calculation	in	enhanced	in	complexity.
For	example,	basic	currency	conversion	is	fairly	simple:	An	amount	is
multiplied	by	an	exchange	rate.	In	actuality,	currency	conversion	has	become
more	complex.	Once	the	European	Union	was	formed,	individual	national
currencies	were	phased	out	when	a	country	adopted	the	euro	as	its	currency.
The	European	Union	then	adopted	a	complex	policy	on	how	these	“dead”
currencies	would	be	converted.	This	consideration	would	be	important	if
contracts	were	set	up	when	the	currency	was	in	place	but	later	the	currency
was	phased	out.	If	you	had	an	old	contract	in	German	deutschemarks	that
needed	to	be	converted	into	U.S.	dollars,	for	example,	it	would	have	to	go
through	this	process.	First	it	would	be	converted	from	German	deutschemarks
to	euros	based	on	the	prevailing	rate.	Then	it	would	be	rounded	based	on	a
standard	rounding	mechanism	for	German	deutschemarks	to	euros,	and	then
it	would	be	converted	from	euros	to	U.S.	dollars	at	the	prevailing	rate.	If	your
programs	had	many	places	where	currency	was	converted,	it	would	make
more	sense	to	encapsulate	the	conversion	process	into	one	function	that
encompassed	this	euro	scenario.	This	function	could	be	a	public	or	private
(explained	later	in	this	chapter)	function	that	all	other	procedures	in	the	same
package	called.

Packages	allow	you	to	make	use	of	some	of	the	concepts	involved	in	object-oriented
programming,	even	though	PL/SQL	is	not	a	“true”	object-oriented	programming	language.
With	the	PL/SQL	package,	you	can	collect	functions	and	procedures	and	provide	them
with	a	context.	Because	all	the	package	code	is	loaded	into	memory,	you	can	also	write
your	code	so	that	similar	code	is	placed	into	the	package	in	a	manner	that	allows	multiple
procedures	and	functions	to	call	them.	You	would	want	to	do	this	if	the	logic	for
calculation	is	fairly	intensive	and	you	want	to	keep	it	in	one	place.

Creating	Package	Specifications
An	additional	level	of	security	applies	when	using	packages.	When	a	user	executes	a
procedure	in	a	package	(or	stored	procedures	and	functions),	the	procedure	operates	with
the	same	permissions	as	its	owner.	Packages	allow	the	creation	of	private	functions	and
procedures,	which	can	be	called	only	from	other	functions	and	procedures	in	the	package.
This	enforces	information	hiding.	The	structure	of	the	package	thus	encourages	top-down
design.

The	Package	Specification

The	package	specification	contains	information	about	the	contents	of	the	package,	but	not
the	code	for	the	procedures	and	functions.	It	also	contains	declarations	of	global/public
variables.	Anything	placed	in	the	declaration	section	of	a	PL/SQL	block	may	be	coded	in	a
package	specification.	All	objects	placed	in	the	package	specification	are	called	public
objects.	Any	function	or	procedure	not	in	the	package	specification	but	coded	in	a	package
body	is	called	a	private	function	or	procedure.

When	public	procedures	and	functions	are	being	called	from	a	package,	the	programmer
writing	the	“calling”	process	needs	only	the	information	in	the	package	specification,	as	it
provides	all	the	information	needed	to	call	one	of	the	procedures	or	functions	within	the
package.	The	syntax	for	the	package	specification	is	as	follows:
Click	here	to	view	code	image

PACKAGE	package_name

IS

	[declarations	of	variables	and	types]

	[specifications	of	cursors]

	[specifications	of	modules]

END	[package_name];

The	Package	Body

The	package	body	contains	the	actual	executable	code	for	the	objects	described	in	the
package	specification.	It	contains	the	code	for	all	procedures	and	functions	described	in
the	specification	and	may	additionally	contain	code	for	objects	not	declared	in	the
specification;	the	latter	type	of	packaged	object	is	invisible	outside	the	package	and	is
referred	to	as	“hidden.”	When	creating	stored	packages,	the	package	specification	and
body	can	be	compiled	separately.
Click	here	to	view	code	image

PACKAGE	BODY	package_name

IS

	[declarations	of	variables	and	types]

	[specification	and	SELECT	statement	of	cursors]

	[specification	and	body	of	modules]

	[BEGIN

executable	statements]

	[EXCEPTION

exception	handlers]

END	[package_name];

Rules	for	the	Package	Body

A	number	of	rules	must	be	followed	in	package	body	code.	First,	there	must	be	an	exact
match	between	the	cursor	and	module	headers	and	their	definitions	in	package
specification.	Second,	declarations	of	variables,	exceptions,	type,	or	constants	in	the
specification	cannot	be	repeated	in	the	body.	Third,	any	element	declared	in	the
specification	can	be	referenced	in	the	body.

Referencing	Package	Elements

You	use	the	following	notation	when	calling	packaged	elements	from	outside	the	package:
package_name.element.

You	do	not	need	to	qualify	elements	when	they	are	declared	and	referenced	inside	the
body	of	the	package	or	when	they	are	declared	in	a	specification	and	referenced	inside	the
body	of	the	same	package.

The	following	example	shows	the	package	specification	for	the	package
manage_students.	Later	in	this	chapter,	a	section	will	describe	the	creation	of	the
body	of	the	same	package.

For	Example		ch21_1.sql
Click	here	to	view	code	image

	1		CREATE	OR	REPLACE	PACKAGE	manage_students

	2		AS

	3				PROCEDURE	find_sname

	4					(i_student_id	IN	student.student_id%TYPE,

	5						o_first_name	OUT	student.first_name%TYPE,

	6						o_last_name	OUT	student.last_name%TYPE

	7);

	8				FUNCTION	id_is_good

	9					(i_student_id	IN	student.student_id%TYPE)

10					RETURN	BOOLEAN;

11		END	manage_students;

Upon	running	this	script,	the	specification	for	the	package	manage_students	will
be	compiled	into	the	database.	The	specification	for	the	package	now	indicates	that	there
is	one	procedure	and	one	function.	The	procedure	find_sname	requires	one	IN
parameter,	the	student	ID;	it	returns	two	OUT	parameters,	the	student’s	first	name	and	the
student’s	last	name.	The	function	id_is_good	takes	in	a	single	parameter,	a	student	ID,
and	returns	a	Boolean	value	(true	or	false).	Although	the	body	has	not	yet	been	entered
into	the	database,	the	package	is	still	available	for	other	applications.	For	example,	if	you
included	a	call	to	one	of	these	procedures	in	another	stored	procedure,	that	procedure
would	compile	(but	would	not	execute).	This	is	illustrated	by	the	following	example.

For	Example		ch21_2.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_first_name	student.first_name%TYPE;

		v_last_name	student.last_name%TYPE;

BEGIN

		manage_students.find_sname

				(125,	v_first_name,	v_last_name);

		DBMS_OUTPUT.PUT_LINE(v_first_name||’	‘||v_last_name);

END;

This	procedure	cannot	run	because	only	the	specification	for	the	procedure	exists	in	the
database,	not	the	body.	The	SQL*Plus	session	returns	the	following	output:
Click	here	to	view	code	image

ERROR	at	line	1:

ORA-04068:	existing	state	of	packages	has	been	discarded

ORA-04067:	not	executed,	package	body

											“STUDENT.MANAGE_STUDENTS”	does	not	exist

ORA-06508:	PL/SQL:	could	not	find	program

											unit	being	called

ORA-06512:	at	line	5

The	following	example	creates	a	package	specification	for	a	package	named
school_api.	This	package	contains	the	procedure	discount_cost	from	Chapter	19
and	the	function	new_instructor_id	from	Chapter	20.

For	Example		ch21_3.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE		school_api	as

			PROCEDURE	discount_cost;

			FUNCTION	new_instructor_id

					RETURN	instructor.instructor_id%TYPE;

END	school_api;

Creating	Package	Bodies
Now	we	will	create	the	body	of	the	manage_students	and	school_api	packages,
which	were	specified	in	the	previous	section.

For	Example		ch21_4.sql
Click	here	to	view	code	image

	1		CREATE	OR	REPLACE	PACKAGE	BODY	manage_students

	2		AS

	3				PROCEDURE	find_sname

	4						(i_student_id	IN	student.student_id%TYPE,

	5							o_first_name	OUT	student.first_name%TYPE,

	6							o_last_name	OUT	student.last_name%TYPE

	7)

	8				IS

	9					v_student_id		student.student_id%TYPE;

10					BEGIN

11							SELECT	first_name,	last_name

12									INTO	o_first_name,	o_last_name

13									FROM	student

14								WHERE	student_id	=	i_student_id;

15						EXCEPTION

16							WHEN	OTHERS

17							THEN

18									DBMS_OUTPUT.PUT_LINE

19						(‘Error	in	finding	student_id:	‘||v_student_id);

20						END	find_sname;

21						FUNCTION	id_is_good

22							(i_student_id	IN	student.student_id%TYPE)

23							RETURN	BOOLEAN

24						IS

25							v_id_cnt	number;

26						BEGIN

27							SELECT	COUNT(*)

28									INTO	v_id_cnt

29									FROM	student

30								WHERE	student_id	=	i_student_id;

31							RETURN	1	=	v_id_cnt;

32						EXCEPTION

33						WHEN	OTHERS

34						THEN

35							RETURN	FALSE;

36						END	id_is_good;

37				END	manage_students;

This	script	compiles	the	package	manage_students	into	the	database.	The
specification	for	the	package	indicates	that	there	is	one	procedure	and	one	function.	The
procedure	find_sname	requires	one	IN	parameter,	the	student	ID;	it	returns	two	OUT
parameters,	the	student’s	first	name	and	the	student’s	last	name.	The	function
id_is_good	takes	in	a	single	parameter	of	a	student	ID	and	returns	a	Boolean	value
(true	or	false).	Although	the	body	has	not	yet	been	entered	into	the	database,	the	package
is	still	available	for	other	applications.	For	example,	if	you	included	a	call	to	one	of	these
procedures	in	another	stored	procedure,	that	procedure	would	compile	(but	would	not
execute).

The	next	example	creates	the	package	body	for	the	package	named	school_api	that
was	created	in	the	previous	example.	It	contains	the	procedure	discount_cost	from
Chapter	19	and	the	function	new_instructor_id	from	Chapter	20.

For	Example		ch21_5.sql
Click	here	to	view	code	image

	1	CREATE	OR	REPLACE	PACKAGE	BODY	school_api	AS

	2				PROCEDURE	discount_cost

	3				IS

	4							CURSOR	c_group_discount

	5							IS

	6							SELECT	distinct	s.course_no,	c.description

	7									FROM	section	s,	enrollment	e,	course	c

	8								WHERE	s.section_id	=	e.section_id

	9							GROUP	BY	s.course_no,	c.description,

10															e.section_id,	s.section_id

11							HAVING	COUNT(*)	>=8;

12				BEGIN

14							FOR	r_group_discount	IN	c_group_discount

14							LOOP

15							UPDATE	course

16										SET	cost	=	cost	*	.95

17								WHERE	course_no	=	r_group_discount.course_no;

18									DBMS_OUTPUT.PUT_LINE

19											(‘A	5%	discount	has	been	given	to’

20											||r_group_discount.course_no||’

21										’||r_group_discount.description);

22							END	LOOP;

23						END	discount_cost;

24					FUNCTION	new_instructor_id

25								RETURN	instructor.instructor_id%TYPE

26					IS

27								v_new_instid	instructor.instructor_id%TYPE;

28					BEGIN

29								SELECT	INSTRUCTOR_ID_SEQ.NEXTVAL

30										INTO	v_new_instid

31										FROM	dual;

32								RETURN	v_new_instid;

33					EXCEPTION

34								WHEN	OTHERS

35									THEN

36										DECLARE

37													v_sqlerrm	VARCHAR2(250)	:=

																		SUBSTR(SQLERRM,1,250);

38										BEGIN

39												RAISE_APPLICATION_ERROR(-20003,

40												‘Error	in			instructor_id:	‘||v_sqlerrm);

41										END;

42					END	new_instructor_id;

43			END	school_api;

Calling	Stored	Packages
Now	we	will	use	elements	of	the	manage_students	package	in	another	code	block.

For	Example		ch21_6.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		v_first_name	student.first_name%TYPE;

		v_last_name	student.last_name%TYPE;

BEGIN

		IF	manage_students.id_is_good(&&v_id)

		THEN

				manage_students.find_sname(&&v_id,	v_first_name,

							v_last_name);

		DBMS_OUTPUT.PUT_LINE(‘Student	No.	‘||&&v_id||’	is	‘

						||v_last_name||’,	‘||v_first_name);

ELSE

			DBMS_OUTPUT.PUT_LINE

			(‘Student	ID:	‘||&&v_id||’	is	not	in	the	database.’);

END	IF;

END;

This	is	a	correct	PL/SQL	block	for	running	the	function	and	the	procedure	in	the
package	manage_students.	If	an	existing	student_id	is	entered,	then	the	name	of
the	student	is	displayed.	If	the	student	ID	is	not	valid,	then	an	error	message	is	displayed.
The	following	example	shows	the	result	when	145	is	entered	for	the	variable	v_id	in
SQL	Developer.	The	script	output	shows	the	original	script	and	then	the	script	once	all
variables	have	been	replaced	with	the	number	entered	(in	this	case	145).	The	final	line	(in
bold)	is	the	result.
Click	here	to	view	code	image

old:DECLARE

		v_first_name	student.first_name%TYPE;

		v_last_name	student.last_name%TYPE;

BEGIN

		IF	manage_students.id_is_good(&&v_id)

		THEN

				manage_students.find_sname(&&v_id,	v_first_name,

							v_last_name);

		DBMS_OUTPUT.PUT_LINE(‘Student	No.	‘||&&v_id||’	is	‘

						||v_last_name||’,	‘||v_first_name);

ELSE

			DBMS_OUTPUT.PUT_LINE

			(‘Student	ID:	‘||&&v_id||’	is	not	in	the	database.’);

END	IF;

END;

new:DECLARE

		v_first_name	student.first_name%TYPE;

		v_last_name	student.last_name%TYPE;

BEGIN

		IF	manage_students.id_is_good(145)

		THEN

				manage_students.find_sname(145,	v_first_name,

							v_last_name);

		DBMS_OUTPUT.PUT_LINE(‘Student	No.	‘||145||’	is	‘

						||v_last_name||’,	‘||v_first_name);

ELSE

			DBMS_OUTPUT.PUT_LINE

			(‘Student	ID:	‘||145||’	is	not	in	the	database.’);

END	IF;

END;

anonymous	block	completed

Student	No.	145	is	Lefkowitz,	Paul

The	function	id_is_good	returns	TRUE	for	an	existing	student_id	such	as	145.
Control	then	passes	to	the	first	part	of	the	IF	statement	and	the	procedure
manage_students.find_sname	finds	the	first	and	last	names	for	student_id	of
145—specifically,	Paul	Lefkowitz.

The	following	is	an	example	of	a	test	script	for	the	school_api	package.

For	Example		ch21_7.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

		V_instructor_id	instructor.instructor_id%TYPE;

BEGIN

		School_api.Discount_Cost;

		v_instructor_id	:=	school_api.new_instructor_id;

		DBMS_OUTPUT.PUT_LINE

				(‘The	new	id	is:	‘||v_instructor_id);

END;

Creating	Private	Objects
Public	elements	are	elements	defined	in	the	package	specification.	If	an	object	is	defined
only	in	the	package	body,	then	it	is	private.	Private	elements	cannot	be	accessed	directly
by	any	programs	outside	the	package.	You	can	think	of	the	package	specification	as	being
a	“menu”	of	packaged	items	that	are	available	to	users;	there	may	be	other	objects
working	behind	the	scenes,	but	they	aren’t	accessible.	They	cannot	be	called	or	utilized	in
any	way;	they	are	available	as	part	of	the	internal	“menu”	of	the	package	and	can	be	called
only	by	other	elements	of	the	package.

The	following	steps	show	how	to	transform	the	package	manage_students	so	that
the	function	student_count_priv	becomes	a	private	function.	The	public	procedure

display_student_count	then	calls	this	private	function.

Step	1:	Replace	the	last	lines	of	the	manage_students	package	specification	with
the	following	code	and	recompile	the	package	specification:
Click	here	to	view	code	image

11				PROCEDURE	display_student_count;

12		END	manage_students;

Step	2:	Replace	the	end	of	the	body	with	the	following	code	and	recompile	the	package
body.	Lines	1–36	are	unchanged	from	lines	1–36	in	example	ch21_4.sql:
Click	here	to	view	code	image

37			FUNCTION	student_count_priv

38					RETURN	NUMBER

39				IS

40					v_count	NUMBER;

41				BEGIN

42					select	count(*)

43					into	v_count

44					from	student;

45					return	v_count;

46				EXCEPTION

47					WHEN	OTHERS

48							THEN

49							return(0);

50				END	student_count_priv;

51				PROCEDURE	display_student_count

52					is

53					v_count	NUMBER;

54				BEGIN

55					v_count	:=	student_count_priv;

56					DBMS_OUTPUT.PUT_LINE

57								(‘There	are	‘||v_count||’	students.’);

58				END	display_student_count;

59		END	manage_students;

Now	run	the	following	script:
Click	here	to	view	code	image

DECLARE

		V_count	NUMBER;

BEGIN

		V_count	:=	Manage_students.student_count_priv;

		DBMS_OUTPUT.PUT_LINE(v_count);

END;

Because	the	private	function	student_count_priv	cannot	be	called	from	outside	the
package,	you	will	receive	the	following	error	message:
Click	here	to	view	code	image

ERROR	at	line	1:

ORA-06550:	line	4,	column	31:

PLS-00302:	component	‘STUDENT_COUNT_PRIV’	must	be	declared

ORA-06550:	line	4,	column	3:

PL/SQL:	Statement	ignored

It	appears	as	if	the	private	function	does	not	exist.	This	point	is	important	to	keep	in

mind—it	can	be	useful	when	you	are	writing	PL/SQL	packages	used	by	other	developers.
Those	developers	need	to	see	only	the	package	specification,	not	the	inner	workings	of	the
package.	That	is,	they	need	to	know	what	is	being	passed	into	the	procedures	and
functions	and	what	is	being	returned.	If	a	number	of	procedures	will	make	use	of	the	same
logic,	it	may	make	more	sense	to	put	that	logic	into	a	private	function	called	by	the
procedures.	This	is	also	a	good	approach	to	keep	in	mind	if	one	calculation	will	be	used	by
many	other	procedures	in	the	same	package.	For	example,	we	just	created	a	function	to
count	students.	Perhaps	other	procedures	will	need	to	make	use	of	this	function—such	as
if	a	change	in	the	price	of	all	courses	should	occur	once	the	student	count	reaches	a	certain
number.

The	following	example	shows	a	valid	method	of	running	a	procedure.	The	result	would
be	a	line	indicating	the	number	of	students	in	the	database.	Note	that	the	procedure	in	the
package	manage_students	uses	the	private	function	student_count_priv	to
retrieve	the	student	count.
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

Execute	manage_students.display_student_count;

If	you	forget	to	include	a	procedure	or	function	in	a	package	specification,	it	becomes
private.	If	you	declare	a	procedure	or	function	in	the	package	specification,	but	then	do	not
define	it	when	you	create	the	body,	you	will	receive	the	following	error	message:
Click	here	to	view	code	image

PLS-00323:	subprogram	or	cursor	‘procedure_name’	is

declared	in	a	package	specification	and	must	be

defined	in	the	package	body

The	following	updated	script	for	the	manage_students	package	adds	a	private
function	to	the	school_api	called	get_course_descript_private.	It	accepts	a
course.course_no%TYPE	and	returns	a	course.description%TYPE.	It
searches	for	and	returns	the	course	description	for	the	course	number	passed	to	it.	If	the
course	does	not	exist	or	if	an	error	occurs,	it	returns	NULL.	Nothing	needs	to	be	added	to
the	package	specification,	because	you	are	simply	adding	a	private	object.

For	Example		ch21_8.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	manage_students

AS

			PROCEDURE	find_sname

					(i_student_id	IN	student.student_id%TYPE,

						o_first_name	OUT	student.first_name%TYPE,

						o_last_name	OUT	student.last_name%TYPE

);

			FUNCTION	id_is_good

					(i_student_id	IN	student.student_id%TYPE)

					RETURN	BOOLEAN;

		PROCEDURE	display_student_count;

END	manage_students;

The	package	body	for	manage_students	now	has	the	following	form:

For	Example		ch21_9.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	BODY	manage_students

AS

		PROCEDURE	find_sname

				(i_student_id	IN	student.student_id%TYPE,

					o_first_name	OUT	student.first_name%TYPE,

					o_last_name	OUT	student.last_name%TYPE

)

		IS

			v_student_id		student.student_id%TYPE;

			BEGIN

						SELECT	first_name,	last_name

								INTO	o_first_name,	o_last_name

								FROM	student

							WHERE	student_id	=	i_student_id;

				EXCEPTION

						WHEN	OTHERS

						THEN

								DBMS_OUTPUT.PUT_LINE

				(‘Error	in	finding	student_id:	‘||v_student_id);

				END	find_sname;

				FUNCTION	id_is_good

						(i_student_id	IN	student.student_id%TYPE)

						RETURN	BOOLEAN

				IS

						v_id_cnt	number;

				BEGIN

						SELECT	COUNT(*)

								INTO	v_id_cnt

								FROM	student

							WHERE	student_id	=	i_student_id;

						RETURN	1	=	v_id_cnt;

				EXCEPTION

				WHEN	OTHERS

				THEN

						RETURN	FALSE;

				END	id_is_good;

FUNCTION	student_count_priv

		RETURN	NUMBER

	IS

		v_count	NUMBER;

	BEGIN

		select	count(*)

		into	v_count

		from	student;

		return	v_count;

	EXCEPTION

		WHEN	OTHERS

				THEN

				return(0);

	END	student_count_priv;

	PROCEDURE	display_student_count

		is

		v_count	NUMBER;

	BEGIN

		v_count	:=	student_count_priv;

		DBMS_OUTPUT.PUT_LINE

					(‘There	are	‘||v_count||’	students.’);

	END	display_student_count;

	FUNCTION	get_course_descript_private

				(i_course_no		course.course_no%TYPE)

				RETURN	course.description%TYPE

		IS

					v_course_descript	course.description%TYPE;

		BEGIN

					SELECT	description

							INTO	v_course_descript

							FROM	course

						WHERE	course_no	=	i_course_no;

					RETURN	v_course_descript;

		EXCEPTION

					WHEN	OTHERS

					THEN

								RETURN	NULL;

		END	get_course_descript_private;

END	manage_students;

Lab	21.2:	Cursor	Variables

After	this	lab,	you	will	be	able	to

	Make	Use	of	Cursor	Variables

Up	to	this	point	in	this	book,	you	have	seen	cursors	used	to	gather	specific	data	from	a
single	SELECT	statement.	At	the	beginning	of	this	chapter,	you	learned	how	to	bring	a
number	of	procedures	together	into	a	large	program	called	a	package.	A	package	may	have
one	cursor	that	is	used	by	a	few	procedures.	In	this	case,	each	of	the	procedures	that	uses
the	same	cursor	would	have	to	declare,	open,	fetch,	and	close	the	cursor.	In	the	current
version	of	PL/SQL,	cursors	can	be	declared	and	manipulated	like	any	other	PL/SQL
variable.	This	type	of	variable	is	called	a	cursor	variable	or	a	REF	CURSOR.	A	cursor
variable	is	just	a	reference	or	a	handle	to	a	static	cursor.	It	permits	a	programmer	to	pass
this	reference	to	the	same	cursor	among	all	the	program’s	units	that	need	access	to	the
cursor.	A	cursor	variable	binds	the	cursor’s	SELECT	statement	dynamically	at	run	time.

Explicit	cursors	are	used	to	name	a	work	area	that	holds	the	information	of	a	multirow
query.	A	cursor	variable	may	be	used	to	point	to	the	area	in	memory	where	the	result	of	a
multirow	query	is	stored.	The	cursor	always	refers	to	the	same	information	in	a	work	area,
whereas	a	cursor	variable	can	point	to	different	work	areas.	Cursors	are	static,	but	cursor
variables	can	be	seen	as	dynamic	because	they	are	not	tied	to	any	one	specific	query.
Cursor	variables	give	you	easy	access	to	centralized	data	retrieval.

You	can	use	a	cursor	variable	to	pass	the	result	set	of	a	query	between	stored	procedures
and	various	clients.	A	query	work	area	remains	accessible	as	long	as	a	cursor	variable
points	to	it.	As	a	consequence,	you	can	freely	pass	a	cursor	variable	from	one	scope	to
another.	Two	types	of	cursor	variables	exist:	strong	and	weak.

To	execute	a	multirow	query,	the	Oracle	server	opens	a	work	area	called	a	cursor	to
store	processing	information.	To	access	this	information,	you	either	name	the	work	area	or
use	a	cursor	variable	that	points	to	the	work	area.	A	cursor	always	refers	to	the	same	work

area,	whereas	a	cursor	variable	can	refer	to	different	work	areas.	Hence,	cursors	and	cursor
variables	are	not	interoperable.	An	explicit	cursor	is	static	and	is	associated	with	one	SQL
statement.	A	cursor	variable,	in	contrast,	can	be	associated	with	different	statements	at	run
time.	Primarily	you	use	a	cursor	variable	to	pass	a	pointer	to	query	result	sets	between
PL/SQL	stored	subprograms	and	various	clients,	such	as	a	client	Oracle	Developer	Forms
application.	None	of	them	owns	the	result	set;	they	simply	share	a	pointer	to	the	query
work	area	that	stores	the	result	set.	You	can	declare	a	cursor	variable	on	the	client	side,
open	and	fetch	from	it	on	the	server	side,	and	then	continue	to	fetch	from	it	on	the	client
side.

Cursor	variables	differ	from	cursors	in	much	the	same	way	that	constants	differ	from
variables.	A	cursor	is	static;	a	cursor	variable	is	dynamic.	In	PL/SQL,	a	cursor	variable	has
a	REF	CURSOR	data	type,	where	REF	stands	for	reference	and	CURSOR	stands	for	the
class	of	the	object.	You	will	now	learn	the	syntax	for	declaring	and	using	a	cursor	variable.

To	create	a	cursor	variable,	you	first	need	to	define	a	REF	CURSOR	type	and	then
declare	a	variable	of	that	type.	Before	you	declare	the	REF	CURSOR	to	be	of	a	strong
type,	you	must	declare	a	record	that	has	the	data	types	of	the	result	set	of	the	SELECT
statement	that	you	plan	to	use	(note	that	this	step	is	not	necessary	for	a	weak	REF
CURSOR).
Click	here	to	view	code	image

TYPE	inst_city_type	IS	RECORD

	(first_name	instructor.first_name%TYPE;

	last_name			instructor.last_name%TYPE;

	city								zipcode.city%TYPE;

	state							zipcode.state%TYPE)

Second,	you	must	declare	a	composite	data	type	for	the	cursor	variable	that	is	of	the
type	REF	CURSOR.	The	syntax	is	as	follows:
Click	here	to	view	code	image

TYPE	ref_type_name	is	REF	CURSOR	[RETURN	return_type];

The	ref_type_name	is	a	type	specified	in	subsequent	declarations.	The	return	type
represents	a	record	type	for	a	strong	cursor;	a	weak	cursor	does	not	have	a	specific	return
type	but	can	handle	any	combination	of	data	items	in	a	SELECT	statement.	The	REF
CURSOR	keywords	indicate	that	the	new	type	will	be	a	pointer	to	the	defined	type.	The
return_type	indicates	the	types	of	SELECT	lists	that	are	eventually	returned	by	the
cursor	variable.	The	return	type	must	be	a	record	type.
Click	here	to	view	code	image

TYPE	inst_city_cur	IS	REF	CURSOR	RETURN	inst_city_type;

A	cursor	variable	can	be	strong	(restrictive)	or	weak	(nonrestrictive).	A	strong	cursor
variable	is	a	REF	CURSOR	type	definition	that	specifies	a	return_type;	a	weak
definition	does	not.	PL/SQL	enables	you	to	associate	a	strong	type	with	type-comparable
queries	only,	while	a	weak	type	can	be	associated	with	any	query.	This	makes	a	strong
cursor	variable	less	error	prone	but	renders	weak	REF	CURSOR	types	more	flexible.

Following	are	the	key	steps	for	handling	a	cursor	variable:

1.	Define	and	declare	the	cursor	variable.

Open	the	cursor	variable.	Associate	a	cursor	variable	with	a	multirow	SELECT
statement,	execute	the	query,	and	identify	the	result	set.	An	OPEN	FOR	statement
can	open	the	same	cursor	variable	for	different	queries.	You	do	not	need	to	close	a
cursor	variable	before	reopening	it.	Keep	in	mind	that	when	you	reopen	a	cursor
variable	for	a	different	query,	the	previous	query	is	lost.	A	good	programming
technique	is	to	close	the	cursor	variables	before	reopening	them	later	on	in	the
program.

2.	Fetch	rows	from	the	result	set.

Retrieve	rows	from	the	result	set,	one	at	a	time.	Note	that	the	return	type	of	the
cursor	variable	must	be	compatible	with	the	variable	named	in	the	INTO	clause	of
the	FETCH	statement.

The	FETCH	statement	retrieves	rows	from	the	result	set,	one	at	a	time.	PL/SQL
verifies	that	the	return	type	of	the	cursor	variable	is	compatible	with	the	INTO
clause	of	the	FETCH	statement.	For	each	query	column	value	returned,	there	must
be	a	type-comparable	variable	in	the	INTO	clause.	Also,	the	number	of	query
column	values	must	equal	the	number	of	variables.	In	case	of	a	mismatch	in	number
or	type,	an	error	occurs	at	compile	time	for	strongly	typed	cursor	variables	and	at
run	time	for	weakly	typed	cursor	variables.

3.	Close	the	cursor	variable.

The	next	example	shows	the	use	of	a	cursor	variable	in	a	package.

For	Example		ch21_10.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	course_pkg	AS

		TYPE	course_rec_typ	IS	RECORD

				(first_name			student.first_name%TYPE,

					last_name				student.last_name%TYPE,

					course_no				course.course_no%TYPE,

					description		course.description%TYPE,

					section_no			section.section_no%TYPE

);

		TYPE	course_cur	IS	REF	CURSOR	RETURN	course_rec_typ;

		PROCEDURE	get_course_list

				(p_student_id				NUMBER	,

					p_instructor_id	NUMBER	,

					course_list_cv	IN	OUT	course_cur);

END	course_pkg;

/

CREATE	OR	REPLACE	PACKAGE	BODY	course_pkg	AS

		PROCEDURE	get_course_list

				(p_student_id				NUMBER	,

					p_instructor_id	NUMBER	,

					course_list_cv	IN	OUT	course_cur)

		IS

		BEGIN

				IF	p_student_id	IS	NULL	AND	p_instructor_id

						IS	NULL	THEN

						OPEN	course_list_cv	FOR

								SELECT	‘Please	choose	a	student-‘	First_name,

															‘instructor	combination’		Last_name,

										NULL			course_no,

										NULL			description,

										NULL			section_no

										FROM	dual;

				ELSIF	p_student_id	IS	NULL		THEN

						OPEN	course_list_cv	FOR

								SELECT	s.first_name			first_name,

										s.last_name				last_name,

										c.course_no				course_no,

										c.description		description,

										se.section_no		section_no

			FROM		instructor	i,	student	s,

									section	se,	course	c,	enrollment	e

		WHERE		i.instructor_id	=	p_instructor_id

				AND		i.instructor_id	=	se.instructor_id

				AND		se.course_no				=	c.course_no

				AND		e.student_id				=	s.student_id

				AND		e.section_id				=	se.section_id

					ORDER	BY		c.course_no,	se.section_no;

				ELSIF	p_instructor_id	IS	NULL		THEN

						OPEN	course_list_cv	FOR

											SELECT	i.first_name			first_name,

										i.last_name					last_name,

										c.course_no					course_no,

										c.description			description,

										se.section_no			section_no

			FROM		instructor	i,	student	s,

									section	se,	course	c,	enrollment	e

		WHERE		s.student_id	=	p_student_id

				AND		i.instructor_id	=	se.instructor_id

				AND		se.course_no				=	c.course_no

				AND		e.student_id				=	s.student_id

				AND		e.section_id				=	se.section_id

								ORDER	BY		c.course_no,	se.section_no;

								END	IF;

					END	get_course_list;

END	course_pkg;

You	can	pass	query	result	sets	between	PL/SQL	stored	subprograms	and	various	clients.
This	approach	works	because	PL/SQL	and	its	clients	share	a	pointer	to	the	query	work
area	identifying	the	result	set.	This	can	be	done	in	a	client	program	like	SQL*Plus	by
defining	a	host	variable	with	a	data	type	of	REF	CURSOR	to	hold	the	query	result
generated	from	a	REF	CURSOR	in	a	stored	program.	To	see	what	is	being	stored	in	the
SQL*Plus	variable,	use	the	SQL*Plus	PRINT	command.	Optionally,	you	can	use	the
SQL*Plus	command	SET	AUTOPRINT	ON	to	display	the	query	results	automatically.

In	script	ch21_10,	the	package	specification	includes	two	declarations	of	a	TYPE.	The
first	is	for	the	record	type	course_rec_type.	This	record	type	is	declared	to	define	the
result	set	of	the	SELECT	statements	that	will	be	used	for	the	cursor	variable.	When	data
items	in	a	record	do	not	match	a	single	table,	it	is	necessary	to	create	a	record	type.	The
second	TYPE	declaration	is	for	the	cursor	variable,	REF	CURSOR.	This	variable	has	the
name	course_cur	and	is	declared	as	a	strong	cursor,	meaning	that	it	can	be	used	only

for	a	single	record	type.	The	record	type	is	course_rec_type.	The	procedure
get_course_list	in	the	course_pkg	returns	a	cursor	variable	that	holds	three
different	result	sets.	Each	of	the	result	sets	is	of	the	same	record	type.

	The	first	type	is	for	when	both	IN	parameters—that	is,	the	student	ID	and	instructor
ID—are	null.	This	will	produce	a	result	set	that	consists	of	a	message,	“Please
choose	a	student-instructor	combination.”

	The	second	way	the	procedure	runs	is	if	the	instructor_id	is	passed	in	but	the
student_id	is	null	(note	that	the	logic	of	the	procedure	is	a	reverse	negative;
saying	in	the	second	clause	of	the	IF	statement	p_student_id	IS	NULL,
means	“when	the	instructor_id	is	passed	in”).	This	will	run	a	SELECT
statement	to	populate	the	cursor	variable	that	holds	a	list	of	all	courses	this	instructor
teaches	and	the	students	enrolled	in	these	classes.

	The	third	way	this	procedure	runs	is	with	a	student_id	and	no
instructor_id.	This	will	produce	a	result	set	containing	all	the	courses	the
student	is	enrolled	in	and	the	instructor	for	each	section.

Be	aware	that	once	the	cursor	variable	is	opened,	it	is	not	closed	until	you	specifically
close	it.

The	following	SQL	statement	will	create	a	variable	that	is	a	cursor	variable	type:
Click	here	to	view	code	image

VARIABLE	course_cv	REF	CURSOR

There	are	three	ways	to	execute	this	procedure.	The	first	way	would	be	to	pass	a	student
ID	and	not	an	instructor	ID:
Click	here	to	view	code	image

exec	course_pkg.get_course_list(102,	NULL,	:course_cv);

The	contents	of	the	variable	course_cv	can	then	be	displayed	in	SQL*Plus	with	the
following	command:
Click	here	to	view	code	image

SQL>	print	course_cv

FIRST_NAME	LAST_NAME		COURSE_NO	DESCRIPTION							SECTION_NO

–––-	–––		–––	–––––—	–––-

Charles				Lowry													25	Intro	to	Programming							2

Nina							Schorin											25	Intro	to	Programming							5

The	next	method	would	be	to	pass	an	instructor	ID	and	not	a	student	ID:
Click	here	to	view	code	image

SQL>	exec	course_pkg.get_course_list(NULL,	102,	:course_cv);

PL/SQL	procedure	successfully	completed.

SQL>	print	course_cv

FIRST_NAME		LAST_NAME			COURSE_NO		DESCRIPTION									SECTION_NO

–––-		–––-		–––		––––––		–––-

Jeff								Runyan													10		Technology	Concepts										2

Dawn								Dennis													25		Intro	to	Programming									4

May									Jodoin													25		Intro	to	Programming									4

Jim									Joas															25		Intro	to	Programming									4

Arun								Griffen												25		Intro	to	Programming									4

Alfred						Hutheesing									25		Intro	to	Programming									4

Lula								Oates													100		Hands-On	Windows													1

Regina						Bose														100		Hands-On	Windows													1

Jenny							Goldsmith									100		Hands-On	Windows													1

Roger							Snow														100		Hands-On	Windows													1

Rommel						Frost													100		Hands-On	Windows													1

Debra							Boyce													100		Hands-On	Windows													1

Janet							Jung														120		Intro	to	Java	Programming				4

John								Smith													124		Advanced	Java	Programming				1

Charles					Caro														124		Advanced	Java	Programming				1

Sharon						Thompson										124		Advanced	Java	Programming				1

Evan								Fielding										124		Advanced	Java	Programming				1

Ronald						Tangaribuan							124		Advanced	Java	Programming				1

N											Kuehn													146		Java	for	C/C++	Programmers			2

Derrick					Baltazar										146		Java	for	C/C++	Programmers			2

Angela						Torres												240		Intro	to	the	Basic	Language		2

The	last	method	would	be	not	to	pass	either	the	student	ID	or	the	instructor	ID:
Click	here	to	view	code	image

SQL>	exec	course_pkg.get_course_list(NULL,	NULL,		:course_cv);

PL/SQL	procedure	successfully	completed.

SQL>		print	course_cv

FIRST_NAME														LAST_NAME												C	DESCRIPTION						S

–––––––—	––––––––-	-	–––––

Please	choose	a	student-		instructor	combination

The	next	example	creates	another	package	called	student_info_pkg	that	has	a
single	procedure	called	get_student_info.	The	get_student_info	package
will	have	three	parameters:	the	student_id,	a	number	called	p_choice,	and	a	weak
cursor	variable.	The	p_choice	parameter	indicates	which	information	will	be	delivered
about	the	student.	If	it	is	1,	then	the	procedure	will	return	the	information	about	the
student	from	the	STUDENT	table.	If	it	is	2,	then	the	procedure	will	list	all	the	courses	in
which	the	student	is	enrolled,	along	with	the	student	names	of	the	fellow	students	enrolled
in	the	same	section	as	the	student	with	the	student_id	that	was	passed	in.	If	it	is	3,
then	the	procedure	will	return	the	instructor	name	for	that	student,	with	the	information
about	the	courses	in	which	the	student	is	enrolled.

For	Example		ch21_11.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	student_info_pkg	AS

		TYPE	student_details	IS	REF	CURSOR;

		PROCEDURE	get_student_info

				(p_student_id		NUMBER	,

					p_choice						NUMBER	,

					details_cv	IN	OUT	student_details);

END	student_info_pkg;

/

CREATE	OR	REPLACE	PACKAGE	BODY	student_info_pkg	AS

		PROCEDURE	get_student_info

				(p_student_id		NUMBER	,

					p_choice						NUMBER	,

					details_cv	IN	OUT	student_details)

		IS

		BEGIN

				IF	p_choice	=	1		THEN

						OPEN	details_cv	FOR

								SELECT	s.first_name		first_name,

															s.last_name			last_name,

															s.street_address	address,

															z.city								city,

															z.state							state,

															z.zip									zip

									FROM		student	s,	zipcode	z

								WHERE		s.student_id	=	p_student_id

										AND		z.zip	=	s.zip;

				ELSIF	p_choice	=	2	THEN

						OPEN	details_cv		FOR

								SELECT	c.course_no		course_no,

															c.description													description,

															se.section_no													section_no,

															s.first_name	first_name,

															s.last_name		last_name

									FROM		student	s,		section	se,

															course	c,	enrollment	e

								WHERE		se.course_no	=	c.course_no

										AND		e.student_id	=	s.student_id

										AND		e.section_id	=	se.section_id

										AND		se.section_id	in	(SELECT	e.section_id

																																			FROM	student	s,

																																								enrollment	e

																																		WHERE	s.student_id	=

																																								p_student_id

																																				AND	s.student_id	=

																																								e.student_id)

					ORDER	BY		c.course_no;

				ELSIF	p_choice	=	3	THEN

						OPEN	details_cv	FOR

								SELECT	i.first_name				first_name,

															i.last_name					last_name,

															c.course_no					course_no,

															c.description			description,

															se.section_no			section_no

								FROM			instructor	i,	student	s,

															section	se,	course	c,	enrollment	e

								WHERE		s.student_id	=	p_student_id

								AND				i.instructor_id	=	se.instructor_id

								AND				se.course_no				=	c.course_no

								AND				e.student_id				=	s.student_id

								AND				e.section_id				=	se.section_id

					ORDER	BY		c.course_no,	se.section_no;

				END	IF;

		END	get_student_info;

END	student_info_pkg;

To	execute	the	get_student_info	procedure,	you	would	first	have	to	create	a
session	variable:
Click	here	to	view	code	image

VARIABLE	student_cv	REF	CURSOR

Then	execute	the	procedure	with	the	appropriate	values:
Click	here	to	view	code	image

SQL>	execute	student_info_pkg.GET_STUDENT_INFO

				(102,	1,	:student_cv);

Finally	display	the	results:
Click	here	to	view	code	image

PL/SQL	procedure	successfully	completed.

SQL>		print	student_cv

FIRST_	LAST_NAM	ADDRESS											CITY											ST	ZIP

––	––—	––––-	–––-	—	–—

Fred			Crocitto	101-09	120th	St.		Richmond	Hill		NY	11419

SQL>	execute	student_info_pkg.GET_STUDENT_INFO

																										(102,	2,		:student_cv);

PL/SQL	procedure	successfully	completed.

SQL>	print	student_cv

COURSE_NO	DESCRIPTION						SECTION_NO	FIRST_NAME	LAST_NAME

–––	–––––-	–––-	–––-	–––—

							25	Intro	to	Programming						2	Fred							Crocitto

							25	Intro	to	Programming						2	Judy							Sethi

								5	Intro	to	Programming						2	Jenny						Goldsmith

							25	Intro	to	Programming						2	Barbara				Robichaud

							25	Intro	to	Programming						2	Jeffrey				Citron

							25	Intro	to	Programming						2	George					Kocka

							25	Intro	to	Programming						5	Fred							Crocitto

							25	Intro	to	Programming						5	Hazel						Lasseter

							25	Intro	to	Programming						5	James						Miller

							25	Intro	to	Programming						5	Regina					Gates

							25	Intro	to	Programming						5	Arlyne					Sheppard

							25	Intro	to	Programming						5	Thomas					Edwards

							25	Intro	to	Programming						5	Sylvia					Perrin

							25	Intro	to	Programming						5	M.									Diokno

							25	Intro	to	Programming						5	Edgar						Moffat

							25	Intro	to	Programming						5	Bessie					Heedles

							25	Intro	to	Programming						5	Walter					Boremmann

							25	Intro	to	Programming						5	Lorrane				Velasco

SQL>	execute	student_info_pkg.GET_STUDENT_INFO

																													(214,		3,		:student_cv);

PL/SQL	procedure	successfully	completed.

SQL>	print	student_cv

FIRST_NAME	LAST_NAME				COURSE_NO		DESCRIPTION								SECTION_NO

–––-	––––	–––-	–––––––––

Marilyn				Frantzen							120	Intro	to	Java	Programming								1

Fernand				Hanks										122	Intermediate	Java	Programming				5

Gary							Pertez									130	Intro	to	Unix																				2

Marilyn				Frantzen							145	Internet	Protocols															1

Early	versions	of	Oracle	offered	the	use	of	only	REF	CURSOR,	where	first	a	type	of
REF	CURSOR	would	be	created	with	a	particular	record	set	and	then	another	variable
would	have	to	be	created	of	that	type	to	make	use	of	REF	CURSOR	in	stored	procedures
and	functions.	Later	versions	of	Oracle	introduced	the	SYS_REFCURSOR	as	a	predefined

type	(of	type	REF	CURSOR)	that	behaves	in	a	similar	manner.	SYS_REFCURSOR	is
weakly	typed,	which	means	any	SELECT	statement	can	be	used	with	different	FROM	or
WHERE	clauses,	as	well	as	different	number	and	types	of	columns.	The	examples	in
Chapter	24	in	the	section	that	covers	DBMS_SQL	include	a	syntax	example	that	uses
SYS_REFCURSOR	instead	of	REF	CURSOR.

Rules	for	Using	Cursor	Variables

	The	cursor	variable	cannot	be	defined	in	a	package	specification.

	You	cannot	use	cursor	variables	with	remote	subprograms	on	another	server,
so	you	cannot	pass	cursor	variables	to	a	procedure	that	is	called	through	a
database	link.

	Do	not	use	FOR	UPDATE	with	OPEN	FOR	in	processing	a	cursor	variable.

	You	cannot	use	comparison	operators	to	test	cursor	variables	for	equality,
inequality,	or	nullity.

	A	cursor	variable	cannot	be	assigned	a	null	value.

	A	REF	CURSOR	type	cannot	be	used	in	CREATE	TABLE	or	VIEW
statements	as	there	is	no	equivalent	data	type	for	a	database	column.

	A	stored	procedure	that	uses	a	cursor	variable	can	be	used	only	as	a	query
block	data	source;	it	cannot	be	used	for	a	DML	block	data	source.	Using	a
REF	CURSOR	is	ideal	for	queries	that	are	dependent	only	on	variations	in
SQL	statements	and	not	on	PL/SQL	statements.

	You	cannot	store	cursor	variables	in	an	associative	array,	nested	table,	or
varray.

	If	you	pass	a	host	cursor	variable	to	PL/SQL,	you	cannot	fetch	from	it	on	the
server	side	unless	you	also	open	it	there	on	the	same	server	call.

Lab	21.3:	Extending	the	Package

After	this	lab,	you	will	be	able	to

	Extend	the	Package	with	Additional	Procedures

In	this	lab,	you	will	make	use	of	previously	introduced	concepts	to	both	extend	the
packages	you	have	created	and	create	new	ones.	Only	by	completing	extensive	exercises
will	you	become	more	comfortable	with	programming	in	PL/SQL.	It	is	very	important
when	writing	your	PL/SQL	code	that	you	carefully	take	into	consideration	all	aspects	of
the	business	requirements.	A	good	rule	of	thumb	is	to	think	ahead	and	write	your	code	in
reusable	components	so	that	it	will	be	easy	to	extend	and	maintain	that	PL/SQL	code.

Extending	the	Package	with	Additional	Procedures
This	section	provides	more	examples	of	writing	packages	by	working	through	a	complex
package	with	various	complex	functions	and	procedures.	It	is	always	a	best	practice	to
build	up	large	packages	one	step	at	a	time	and	to	test	each	section	you	create	to	ensure	that
it	works	properly	and	does	not	contain	any	syntax	errors.	The	following	set	of	examples
show	you	how	to	build	a	package	step	by	step.

Creating	the	Manage_Grades	Package	Specification

The	following	script	creates	a	new	package	specification	called	manage_grades.	This
package	will	perform	a	number	of	calculations	on	grades	and	will	need	two	package
cursors.	The	first	step	is	to	create	a	cursor	called	c_grade_Type	that	has	an	IN
parameter	of	a	section	ID	and	provides	a	list	of	all	grade	types	for	a	given	section;	this
information	is	necessary	to	calculate	a	student’s	grade	in	that	section.	The	return	items
from	the	cursor	will	be	(1)	the	grade	type	code;	(2)	the	number	of	that	grade	type	for	this
section;	(3)	the	percentage	of	the	final	grade;	and	(4)	the	drop	lowest	indicator	(a	flag).

The	first	thing	you	should	always	do	when	building	a	package	cursor	is	to	write	the
SELECT	statement	and	test	it	on	a	known	result	set.	In	other	words,	you	hard-code	a	value
for	the	variable—for	example,	a	student_id	and	section_id—and	then	replace	the
hard-coded	values	with	the	appropriate	variables.	You	continue	to	build	the	package	one
step	at	a	time	in	this	manner.	Try	to	build	each	component	of	the	package	with	the	smallest
testable	unit	of	code.	Once	that	unit	of	code	is	returning	the	correct	result	and	the	syntax	is
free	of	errors,	you	can	then	turn	to	building	the	next	unit.

The	following	example	contains	only	the	SQL	SELECT	statement.	You	are	well	advised
to	write	the	SQL	SELECT	statement	first	and	then	test	it	for	a	known	value.	In	this	case,
the	student_id	is	145	and	the	section_id	is	106.

For	Example		ch21_12.sql
Click	here	to	view	code	image

SELECT	GRADE_TYPE_CODE,

													NUMBER_PER_SECTION,

													PERCENT_OF_FINAL_GRADE,

													DROP_LOWEST

								FROM	grade_Type_weight

							WHERE	section_id	=	106

									AND	section_id	IN	(SELECT	section_id

																													FROM	grade

																												WHERE	student_id	=	145)

This	SELECT	statement	is	now	put	into	the	package:

For	Example		ch21_13.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	MANAGE_GRADES	AS

—		Cursor	to	loop	through	all	grade	types	for	a	given	section

						CURSOR		c_grade_type

													(pc_section_id		section.section_id%TYPE,

														PC_student_ID		student.student_id%TYPE)

													IS

						SELECT	GRADE_TYPE_CODE,

													NUMBER_PER_SECTION,

													PERCENT_OF_FINAL_GRADE,

													DROP_LOWEST

							FROM		grade_Type_weight

						WHERE		section_id	=	pc_section_id

								AND		section_id	IN	(SELECT	section_id

																														FROM	grade

																													WHERE	student_id	=	pc_student_id);

END	MANAGE_GRADES;

Creating	the	c_grade	Cursor

The	next	example	shows	the	expansion	of	the	manage_grades	package	through	the
addition	of	a	section	cursor	called	c_grades.	This	cursor	will	take	a	grade	type	code,	a
student	ID,	and	a	section	ID	and	return	all	the	grades	for	that	student	for	that	section	of
that	grade	type.	For	example,	if	Alice	was	enrolled	in	the	Introduction	to	Java	section,	this
cursor	could	be	used	to	gather	all	of	her	quiz	grades.

For	Example		ch21_14.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	MANAGE_GRADES	AS

		—	Cursor	to	loop	through	all	grade	types	for	a	given	section.

						CURSOR		c_grade_type

													(pc_section_id		section.section_id%TYPE,

														PC_student_ID		student.student_id%TYPE)

													IS

						SELECT	GRADE_TYPE_CODE,

													NUMBER_PER_SECTION,

													PERCENT_OF_FINAL_GRADE,

													DROP_LOWEST

								FROM	grade_Type_weight

							WHERE	section_id	=	pc_section_id

									AND	section_id	IN	(SELECT	section_id

																														FROM	grade

																													WHERE	student_id	=	pc_student_id);

				—	Cursor	to	loop	through	all	grades	for	a	given	student

				—	in	a	given	section.

					CURSOR		c_grades

														(p_grade_type_code

																			grade_Type_weight.grade_type_code%TYPE,

														pc_student_id		student.student_id%TYPE,

														pc_section_id		section.section_id%TYPE)	IS

						SELECT	grade_type_code,grade_code_occurrence,

													numeric_grade

						FROM			grade

						WHERE		student_id	=	pc_student_id

						AND				section_id	=	pc_section_id

						AND				grade_type_code	=	p_grade_type_code;

END	MANAGE_GRADES;

Creating	the	Function	final_grade

The	next	step	is	to	add	a	function	to	this	package	specification	called	final_grade.
This	function	will	have	two	IN	parameters:	the	student	ID	and	the	section	ID.	It	will
return	a	number—that	student’s	final	grade	in	that	section—plus	an	exit	code.	The	reason
you	add	an	exit	code	instead	of	raise	exceptions	is	because	this	approach	makes	the
procedure	more	flexible	and	allows	the	calling	program	to	choose	how	to	proceed
depending	on	the	specific	error	code	generated.

For	Example		ch21_15.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	MANAGE_GRADES	AS

		—	Cursor	to	loop	through	all	grade	types	for	a	given	section.

						CURSOR			c_grade_type

													(pc_section_id		section.section_id%TYPE,

														PC_student_ID		student.student_id%TYPE)

													IS

						SELECT	GRADE_TYPE_CODE,

													NUMBER_PER_SECTION,

													PERCENT_OF_FINAL_GRADE,

													DROP_LOWEST

						FROM			grade_Type_weight

					WHERE			section_id	=	pc_section_id

							AND	section_id	IN	(SELECT	section_id

																												FROM	grade

																											WHERE	student_id	=	pc_student_id);

				—	Cursor	to	loop	through	all	grades	for	a	given	student

				—	in	a	given	section.

					CURSOR		c_grades

													(p_grade_type_code

																	grade_Type_weight.grade_type_code%TYPE,

														pc_student_id		student.student_id%TYPE,

														pc_section_id		section.section_id%TYPE)	IS

						SELECT		grade_type_code,grade_code_occurrence,

														numeric_grade

							FROM			grade

							WHERE		student_id	=	pc_student_id

							AND				section_id	=	pc_section_id

							AND				grade_type_code	=	p_grade_type_code;

		—	Function	to	calculate	a	student’s	final	grade

		—	in	one	section

					Procedure	final_grade

						(P_student_id			IN	student.student_id%type,

							P_section_id			IN	section.section_id%TYPE,

							P_Final_grade		OUT	enrollment.final_grade%TYPE,

							P_Exit_Code				OUT	CHAR);

END	MANAGE_GRADES;

The	next	step	is	to	add	the	function	to	the	package	body.	To	perform	this	calculation,
you	will	need	a	number	of	variables	to	hold	values	as	the	calculation	is	carried	out.

This	exercise	is	also	a	very	good	review	of	the	data	relationships	among	the	student
tables.	Before	you	read	through	the	next	step,	review	Appendix	B,	which	has	an	entity–
relationship	diagram	(ERD)	of	the	STUDENT	schema	and	descriptions	of	the	tables	and
their	columns.

When	calculating	the	final	grade,	there	are	many	things	that	you	must	keep	in	mind:

	Each	student	is	enrolled	in	a	course,	and	this	information	is	captured	in	the
enrollment	table.

	The	table	holds	the	final	grade	only	for	each	student	enrolled	in	one	section.

	Each	section	has	its	own	set	of	elements	that	are	evaluated	to	calculate	the	final
grade.

	All	grades	for	these	elements	(which	have	been	entered,	meaning	there	is	no	NULL
value	in	the	database)	are	in	the	grade	table.

	Every	grade	has	a	grade	type	code.	These	codes	represent	the	grade	type.	For
example,	the	grade	type	QZ	stands	for	quiz.	The	description	of	each	GRADE_TYPE
comes	from	the	GRADE_TYPE	table.

	The	GRADE_TYPE_WEIGHT	table	holds	key	information	for	this	calculation.	There
is	one	entry	in	this	table	for	each	grade	type	that	is	utilized	in	a	given	section	(not	all
grade	types	exist	for	each	section).

	In	the	GRADE_TYPE_WEIGHT	table,	the	NUMBER_PER_SECTION	column	lists
how	many	times	a	grade	type	should	be	entered	to	compute	the	final	grade	for	a
particular	student	in	a	particular	section	of	a	particular	course.	This	helps	you
determine	whether	all	grades	for	a	given	grade	type	have	been	entered	and	whether
too	many	grades	for	a	given	grade	type	have	been	entered.

	You	must	take	into	consideration	the	drop_lowest	flag.	The	drop_lowest
flag	can	hold	a	value	of	Y	or	N.	If	the	drop	lowest	flag	is	Y	[Y	=	Yes,	N	=	No],	then
you	must	drop	the	lowest	grade	from	the	grade	type	when	calculating	the	final	grade.
The	PERCENT_OF_FINAL_GRADE	column	refers	to	all	the	grades	for	a	given
grade	type.	If	the	homework	element	represents	20	percent	of	the	final	grade,	and
there	are	five	homework	assignments	and	a	drop_lowest	flag,	then	each
remaining	homework	is	worth	5	percent.	When	calculating	the	final	grade,	you
divide	the	PERCENT_OF_FINAL_GRADE	by	the	NUMBER_PER_SECTION	(note
that	would	be	NUMBER_PER_SECTION	–	1	if	drop_lowest	=	Y).

Exit	codes	should	be	defined	as	one	of	the	following	five:

S	=	Success,	the	final	grade	has	been	computed.	If	the	grade	cannot	be	computed,	then
the	final	grade	will	be	NULL	and	the	exit	code	will	be	one	of	the	other	four
options.

	I	=	Incomplete;	not	all	the	required	grades	have	been	entered	for	this	student	in	this
section.

T	=	Too	many	grades	exist	for	this	student.	For	example,	there	should	be	only	four
homework	grades,	but	instead	there	are	six.

N	=	No	grades	have	been	entered	for	this	student	in	this	section.

E	=	There	was	a	general	computation	error	(exception	When_others).	This	kind	of
exit	code	allows	the	procedure	to	compute	final	grades	when	it	can;	if	an	Oracle

error	is	somehow	raised	by	some	of	them,	the	calling	program	can	still	proceed
with	the	grades	that	have	been	computed.

To	calculate	the	final	grade,	you	will	need	a	number	of	variables	to	hold	temporary
values	during	the	calculation.	Initially	the	code	will	create	all	the	variables	for	the
procedure	final_grade,	but	then	it	will	leave	the	main	block	with	just	the	statement
NULL;	this	allows	you	to	compile	the	procedure	and	check	all	of	the	syntax	for	the
variable	declaration	one	step	at	a	time.

The	student_id,	section_id,	and	grade_type_code	will	be	values	carried
from	one	part	of	the	program	to	another—which	is	why	you	created	a	variable	for	each	of
them.	Each	instance	of	a	grade	will	be	computed	to	determine	what	percentage	of	the	final
grade	it	represents.	A	counter	is	needed	while	processing	each	individual	grade	to	ensure
there	are	enough	grades	for	the	given	grade	count.	A	lowest	grade	variable	holds	each
grade	during	the	examination	to	see	whether	it	is	the	lowest.	In	the	end,	once	the	lowest
grade	is	known	for	a	given	grade	type,	it	can	be	removed	from	the	final	grade.
Additionally,	two	variables	are	used	as	row	counters	to	determine	whether	the	cursor	was
opened.

The	next	example	shows	the	package	body	in	a	stub	format;	that	is,	this	example
includes	all	of	the	necessary	variables	but	no	actual	processing	code	has	been	written.	The
reason	you	start	with	this	step	when	writing	the	package	body	is	to	ensure	that	all	of	the
syntax	is	correct.	Once	this	stub	compiles	without	errors,	you	can	then	work	on	the	rest	of
the	code	for	the	package	body.

For	Example		ch21_16.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	BODY	MANAGE_GRADES	AS

				Procedure	final_grade

						(P_student_id			IN	student.student_id%type,

							P_section_id			IN	section.section_id%TYPE,

							P_Final_grade		OUT	enrollment.final_grade%TYPE,

							P_Exit_Code				OUT	CHAR)

IS

					v_student_id													student.student_id%TYPE;

					v_section_id													section.section_id%TYPE;

					v_grade_type_code								grade_type_weight.grade_type_code%TYPE;

					v_grade_percent										NUMBER;

					v_final_grade												NUMBER;

					v_grade_count												NUMBER;

					v_lowest_grade											NUMBER;

					v_exit_code														CHAR(1)	:=	‘S’;

					v_no_rows1															CHAR(1)	:=	‘N’;

					v_no_rows2															CHAR(1)	:=	‘N’;

					e_no_grade															EXCEPTION;

BEGIN

					NULL;

END;

END	MANAGE_GRADES;

The	full	package	body	is	provided	in	the	next	example.	Comments	have	been	placed
inside	the	code	to	explain	what	is	being	done	at	each	step.	It	is	a	good	idea	to	include
comments	within	your	code	to	help	the	next	person	who	has	to	make	changes	to	the

package.

For	Example		ch21_17.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	BODY	MANAGE_GRADES	AS

				Procedure	final_grade

						(P_student_id		IN	student.student_id%type,

							P_section_id		IN	section.section_id%TYPE,

							P_Final_grade	OUT	enrollment.final_grade%TYPE,

							P_Exit_Code			OUT	CHAR)

IS

					v_student_id										student.student_id%TYPE;

					v_section_id										section.section_id%TYPE;

					v_grade_type_code					grade_type_weight.grade_type_code%TYPE;

					v_grade_percent							NUMBER;

					v_final_grade									NUMBER;

					v_grade_count									NUMBER;

					v_lowest_grade								NUMBER;

					v_exit_code											CHAR(1)	:=	‘S’;

					v_no_rows1												CHAR(1)	:=	‘N’;

					v_no_rows2												CHAR(1)	:=	‘N’;

					e_no_grade												EXCEPTION;

BEGIN

				v_section_id	:=	p_section_id;

				v_student_id	:=	p_student_id;

				—	Start	loop	of	grade	types	for	the	section.

							FOR	r_grade	in	c_grade_type(v_section_id,	v_student_id)

							LOOP

				—	Since	cursor	is	open	it	has	a	result

				—	set;	change	indicator.

										v_no_rows1	:=	‘Y’;

				—	To	hold	the	number	of	grades	per	section,

				—	reset	to	0	before	detailed	cursor	loops.

										v_grade_count	:=	0;

										v_grade_type_code	:=	r_grade.GRADE_TYPE_CODE;

				—	Variable	to	hold	the	lowest	grade.

				—	500	will	not	be	the	lowest	grade.

										v_lowest_grade	:=	500;

				—	Determine	what	to	multiply	a	grade	by	to

				—	compute	final	grade;	must	take	into	consideration

				—	if	the	drop	lowest	grade	indicator	is	Y.

										SELECT	(r_grade.percent_of_final_grade	/

																		DECODE(r_grade.drop_lowest,	‘Y’,

																														(r_grade.number_per_section	-	1),

																															r_grade.number_per_section

))*	0.01

											INTO		v_grade_percent

											FROM	dual;

				—	Open	cursor	of	detailed	grade	for	a	student	in	a

				—	given	section.

											FOR	r_detail	in	c_grades(v_grade_type_code,

																													v_student_id,	v_section_id)	LOOP

								—	Since	cursor	is	open	it	has	a	result

								—	set;	change	indicator.

														v_no_rows2	:=	‘Y’;

														v_grade_count		:=	v_grade_count	+	1;

								—	Handle	the	situation	where	there	are	more

								—	entries	for	grades	of	a	given	grade	type

								—	than	there	should	be	for	that	section.

														If	v_grade_count	>	r_grade.number_per_section	THEN

																	v_exit_code	:=	‘T’;

																	raise	e_no_grade;

														END	IF;

								—	If	drop	lowest	flag	is	Y	determine	which	is	lowest

								—	grade	to	drop.

														IF		r_grade.drop_lowest	=	‘Y’	THEN

																			IF	nvl(v_lowest_grade,	0)	>=

																										r_detail.numeric_grade

																	THEN

																							v_lowest_grade	:=	r_detail.numeric_grade;

																			END	IF;

														END	IF;

							—	Increment	the	final	grade	with	percentage	of	current

							—	grade	in	the	detail	loop.

													v_final_grade	:=	nvl(v_final_grade,	0)	+

																				(r_detail.numeric_grade	*	v_grade_percent);

										END	LOOP;

							—	Once	detailed	loop	is	finished,	if	the	number	of	grades

							—	for	a	given	student	for	a	given	grade	type	and	section

							—	is	less	than	the	required	amount,	raise	an	exception.

													IF		v_grade_count	<	r_grade.NUMBER_PER_SECTION	THEN

																	v_exit_code	:=	‘I’;

																	raise	e_no_grade;

													END	IF;

							—	If	the	drop	lowest	flag	was	Y,	then	you	need	to	take

							—	the	lowest	grade	out	of	the	final	grade;	it	was	not

							—	known	when	it	was	added	which	was	the	lowest	grade

							—	to	drop	until	all	grades	were	examined.

													IF		r_grade.drop_lowest	=	‘Y’	THEN

																	v_final_grade	:=	nvl(v_final_grade,	0)	-

																										(v_lowest_grade	*		v_grade_percent);

													END	IF;

						END	LOOP;

			—	If	either	cursor	had	no	rows	then	there	is	an	error.

			IF	v_no_rows1	=	‘N’	OR	v_no_rows2	=	‘N’		THEN

						v_exit_code	:=	‘N’;

						raise	e_no_grade;

			END	IF;

			P_final_grade		:=	v_final_grade;

			P_exit_code				:=	v_exit_code;

			EXCEPTION

					WHEN	e_no_grade	THEN

							P_final_grade	:=	null;

							P_exit_code			:=	v_exit_code;

					WHEN	OTHERS	THEN

							P_final_grade	:=	null;

							P_exit_code			:=	‘E’;

	END	final_grade;

END	MANAGE_GRADES;

The	following	example	is	an	anonymous	block	to	test	the	final_grade	procedure.
The	block	asks	for	a	student_id	and	a	section_id	and	returns	the	final	grade	and
an	exit	code.

It	is	often	a	good	idea	to	review	the	parameter	order	for	the	procedure	before	you	write
the	anonymous	block	to	run	the	code.	In	SQL*Plus,	this	can	be	done	by	running	a	describe

command	on	a	procedure.
Click	here	to	view	code	image

SQL>	desc	manage_grades

PROCEDURE	FINAL_GRADE

Argument	Name																		Type																				In/Out	Default?

––––––––––	–––––––—	––	––—

	P_STUDENT_ID																		NUMBER(8)															IN

	P_SECTION_ID																		NUMBER(8)															IN

	P_FINAL_GRADE																	NUMBER(3)															OUT

	P_EXIT_CODE																			CHAR																				OUT

In	SQL	Developer,	you	can	expand	the	node	for	packages	and	hover	your	cursor	over
the	procedure	to	obtain	more	details.	By	doing	so,	you	can	see	both	what	has	been
declared	in	the	package	header	and	what	is	compiled	in	the	package	body.	This	is
illustrated	in	Figure	21.1.

Figure	21.1	Manage_Grades	Package	as	Seen	in	SQL	Developer

The	following	example	is	an	anonymous	block	that	can	be	used	to	run	the	package
manage_grades.

For	Example		ch21_18.sql
Click	here	to	view	code	image

SET	SERVEROUTPUT	ON

DECLARE

	v_student_id			student.student_id%TYPE	:=	&sv_student_id;

	v_section_id			section.section_id%TYPE	:=	&sv_section_id;

	v_final_grade		enrollment.final_grade%TYPE;

	v_exit_code				CHAR;

BEGIN

		manage_grades.final_grade(v_student_id,	v_section_id,

					v_final_grade,	v_exit_code);

		DBMS_OUTPUT.PUT_LINE(‘The	Final	Grade	is	‘||v_final_grade);

		DBMS_OUTPUT.PUT_LINE(‘The	Exit	Code	is	‘||v_exit_code);

END;

If	you	were	to	run	this	script	for	a	student_id	of	102	and	a	section_id	of	89,
you	would	get	the	following	result	in	SQL*Plus.	In	SQL	Developer,	you	would	see	the
full	code	as	you	ran	it	and	with	the	variables	substituted	for	102	and	89.	Both	outputs	have
the	same	final	lines	that	appear	after	the	anonymous	block	completes.
Click	here	to	view	code	image

Enter	value	for	sv_student_id:	102

old		2:		v_student_id		student.student_id%TYPE	:=	&sv_student_id;

new		2:		v_student_id		student.student_id%TYPE	:=	102;

Enter	value	for	sv_section_id:	86

old		3:		v_section_id		section.section_id%TYPE	:=	&sv_section_id;

new		3:		v_section_id		section.section_id%TYPE	:=	86;

The	Final	Grade	is	89

The	Exit	Code	is	S

PL/SQL	procedure	successfully	completed.

The	next	step	is	to	add	a	function	to	the	manage_grades	package	specification
called	median_grade	that	takes	in	a	course	number	(p_cource_number),	a	section
number	(p_section_number),	and	a	grade	type	(p_grade_type)	and	returns	a
work_grade.grade%TYPE.	Cursors	that	will	be	used	by	this	function	also	need	to	be
added	as	well	as	any	types	that	will	be	required	by	the	function.

For	Example		ch21_19.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	MANAGE_GRADES	AS

		—	Cursor	to	loop	through	all	grade	types	for	a	given	section.

						CURSOR	c_grade_type

														(pc_section_id		section.section_id%TYPE,

															PC_student_ID		student.student_id%TYPE)

														IS

							SELECT	GRADE_TYPE_CODE,

														NUMBER_PER_SECTION,

														PERCENT_OF_FINAL_GRADE,

														DROP_LOWEST

									FROM	grade_Type_weight

								WHERE	section_id	=	pc_section_id

										AND	section_id	IN	(SELECT	section_id

																															FROM	grade

																														WHERE	student_id	=	pc_student_id);

				—	Cursor	to	loop	through	all	grades	for	a	given	student

				—	in	a	given	section.

					CURSOR		c_grades

													(p_grade_type_code

																		grade_Type_weight.grade_type_code%TYPE,

														pc_student_id		student.student_id%TYPE,

														pc_section_id		section.section_id%TYPE)	IS

							SELECT	grade_type_code,grade_code_occurrence,

														numeric_grade

							FROM			grade

							WHERE		student_id	=	pc_student_id

							AND				section_id	=	pc_section_id

							AND				grade_type_code	=	p_grade_type_code;

		—	Function	to	calculate	a	student’s	final	grade

		—	in	one	section.

					Procedure	final_grade

							(P_student_id			IN	student.student_id%type,

								P_section_id			IN	section.section_id%TYPE,

								P_Final_grade		OUT	enrollment.final_grade%TYPE,

								P_Exit_Code				OUT	CHAR);

				—	–––––––––––––––––––

				—	Function	to	calculate	the	median	grade	.

						FUNCTION	median_grade

									(p_course_number	section.course_no%TYPE,

										p_section_number	section.section_no%TYPE,

										p_grade_type	grade.grade_type_code%TYPE)

								RETURN	grade.numeric_grade%TYPE;

				CURSOR	c_work_grade

										(p_course_no		section.course_no%TYPE,

											p_section_no	section.section_no%TYPE,

											p_grade_type_code	grade.grade_type_code%TYPE

)IS

						SELECT	distinct	numeric_grade

								FROM	grade

							WHERE	section_id	=	(SELECT	section_id

																													FROM	section

																												WHERE	course_no=	p_course_no

																														AND	section_no	=	p_section_no)

									AND	grade_type_code	=	p_grade_type_code

						ORDER	BY	numeric_grade;

				TYPE	t_grade_type	IS	TABLE	OF	c_work_grade%ROWTYPE

						INDEX	BY	BINARY_INTEGER;

				t_grade	t_grade_type;

END	MANAGE_GRADES;

The	next	step	is	to	add	a	function	to	the	manage_grades	package	specification
called	median_grade	that	takes	in	a	course	number	(p_cnumber),	a	section	number
(p_snumber),	and	a	grade	type	(p_grade_type).	This	function	will	return	the	median
grade	(work_grade.grade%TYPE	data	type)	based	on	those	three	components.	For
example,	one	might	use	this	function	to	answer	the	question,	“What	is	the	median	grade	of
homework	assignments	in	Introduction	to	Java	section	2?”	A	true	median	can	contain	two
values.	Because	this	function	can	return	only	one	value,	if	the	median	is	made	of	two
values,	then	the	function	will	return	the	average	of	the	two.

For	Example		ch21_20.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	MANAGE_GRADES	AS

CREATE	OR	REPLACE	PACKAGE	BODY	MANAGE_GRADES	AS

				Procedure	final_grade

						(P_student_id		IN	student.student_id%type,

							P_section_id		IN	section.section_id%TYPE,

							P_Final_grade	OUT	enrollment.final_grade%TYPE,

							P_Exit_Code			OUT	CHAR)

IS

					v_student_id										student.student_id%TYPE;

					v_section_id										section.section_id%TYPE;

					v_grade_type_code					grade_type_weight.grade_type_code%TYPE;

					v_grade_percent							NUMBER;

					v_final_grade									NUMBER;

					v_grade_count									NUMBER;

					v_lowest_grade								NUMBER;

					v_exit_code											CHAR(1)	:=	‘S’;

			—		Next	two	variables	are	used	to	calculate	whether	a	cursor

			—		has	no	result	set.

					v_no_rows1														CHAR(1)	:=	‘N’;

					v_no_rows2														CHAR(1)	:=	‘N’;

					e_no_grade														EXCEPTION;

BEGIN

				v_section_id	:=	p_section_id;

				v_student_id	:=	p_student_id;

				—	Start	loop	of	grade	types	for	the	section.

							FOR	r_grade	in	c_grade_type(v_section_id,	v_student_id)

							LOOP

				—	Since	cursor	is	open	it	has	a	result

				—	set;	change	indicator.

										v_no_rows1	:=	‘Y’;

				—	To	hold	the	number	of	grades	per	section,

				—	reset	to	0	before	detailed	cursor	loops.

										v_grade_count	:=	0;

										v_grade_type_code	:=	r_grade.GRADE_TYPE_CODE;

				—	Variable	to	hold	the	lowest	grade.

				—	500	will	not	be	the	lowest	grade.

										v_lowest_grade	:=	500;

				—	Determine	what	to	multiply	a	grade	by	to

				—	compute	final	grade;	must	take	into	consideration

				—	if	the	drop	lowest	grade	indicator	is	Y.

										SELECT	(r_grade.percent_of_final_grade	/

																		DECODE(r_grade.drop_lowest,	‘Y’,

																														(r_grade.number_per_section	-	1),

																															r_grade.number_per_section

))*	0.01

											INTO		v_grade_percent

											FROM	dual;

				—	Open	cursor	of	detailed	grade	for	a	student	in	a

				—	given	section.

											FOR	r_detail	in	c_grades(v_grade_type_code,

																													v_student_id,	v_section_id)	LOOP

								—	Since	cursor	is	open	it	has	a	result

								—	set;	change	indicator.

														v_no_rows2	:=	‘Y’;

														v_grade_count		:=	v_grade_count	+	1;

								—	Handle	the	situation	where	there	are	more

								—	entries	for	grades	of	a	given	grade	type

								—	than	there	should	be	for	that	section.

														If	v_grade_count	>	r_grade.number_per_section	THEN

																	v_exit_code	:=	‘T’;

																	raise	e_no_grade;

														END	IF;

								—	If	drop	lowest	flag	is	Y	determine	which	is	lowest

								—	grade	to	drop.

														IF		r_grade.drop_lowest	=	‘Y’	THEN

																			IF	nvl(v_lowest_grade,	0)	>=

																										r_detail.numeric_grade

																	THEN

																							v_lowest_grade	:=	r_detail.numeric_grade;

																			END	IF;

														END	IF;

							—	Increment	the	final	grade	with	percentage	of	current

							—	grade	in	the	detail	loop.

													v_final_grade	:=	nvl(v_final_grade,	0)	+

																				(r_detail.numeric_grade	*	v_grade_percent);

										END	LOOP;

							—	Once	detailed	loop	is	finished,	if	the	number	of	grades

							—	for	a	given	student	for	a	given	grade	type	and	section

							—	is	less	than	the	required	amount,	raise	an	exception.

													IF		v_grade_count	<	r_grade.NUMBER_PER_SECTION	THEN

																	v_exit_code	:=	‘I’;

																	raise	e_no_grade;

													END	IF;

							—	If	the	drop	lowest	flag	was	Y	then	you	need	to	take

							—	the	lowest	grade	out	of	the	final	grade.	It	was	not

							—	known	when	it	was	added	which	was	the	lowest	grade

							—	to	drop	until	all	grades	were	examined.

													IF		r_grade.drop_lowest	=	‘Y’	THEN

																	v_final_grade	:=	nvl(v_final_grade,	0)	-

																										(v_lowest_grade	*		v_grade_percent);

													END	IF;

						END	LOOP;

			—	If	either	cursor	had	no	rows	then	there	is	an	error.

			IF	v_no_rows1	=	‘N’	OR	v_no_rows2	=	‘N’		THEN

						v_exit_code	:=	‘N’;

						raise	e_no_grade;

			END	IF;

			P_final_grade		:=	v_final_grade;

			P_exit_code				:=	v_exit_code;

			EXCEPTION

					WHEN	e_no_grade	THEN

							P_final_grade	:=	null;

							P_exit_code			:=	v_exit_code;

					WHEN	OTHERS	THEN

							P_final_grade	:=	null;

							P_exit_code			:=	‘E’;

	END	final_grade;

FUNCTION	median_grade

		(p_course_number	section.course_no%TYPE,

		p_section_number	section.section_no%TYPE,

		p_grade_type	grade.grade_type_code%TYPE)

RETURN	grade.numeric_grade%TYPE

		IS

		BEGIN

				FOR	r_work_grade

							IN	c_work_grade(p_course_number,	p_section_number,	p_grade_type)

				LOOP

						t_grade(NVL(t_grade.COUNT,0)	+	1).numeric_grade	:=

r_work_grade.numeric_grade;

				END	LOOP;

				IF	t_grade.COUNT	=	0

				THEN

						RETURN	NULL;

				ELSE

						IF	MOD(t_grade.COUNT,	2)	=	0

						THEN

								—	There	is	an	even	number	of	work	grades.	Find	the	middle

								—			two	and	average	them.

								RETURN	(t_grade(t_grade.COUNT	/	2).numeric_grade	+

																	t_grade((t_grade.COUNT	/	2)	+	1).numeric_grade

)	/	2;

						ELSE

								—	There	is	an	odd	number	of	grades.	Return	the	one	in	the	middle.

								RETURN	t_grade(TRUNC(t_grade.COUNT	/	2,	0)	+	1).numeric_grade;

						END	IF;

				END	IF;

		EXCEPTION

				WHEN	OTHERS

				THEN

						RETURN	NULL;

		END	median_grade;

END	MANAGE_GRADES;

The	following	example	is	a	SELECT	statement	that	makes	use	of	the	function
median_grade	and	shows	the	median	grade	for	all	grade	types	in	sections	1	and	2	of
course	25.

For	Example		ch21_21.sql
Click	here	to	view	code	image

SELECT	COURSE_NO,

							COURSE_NAME,

							SECTION_NO,

							GRADE_TYPE,

							manage_grades.median_grade

															(COURSE_NO,

																SECTION_NO,

																GRADE_TYPE)

												median_grade

FROM

(SELECT	DISTINCT

							C.COURSE_NO								COURSE_NO,

							C.DESCRIPTION						COURSE_NAME,

							S.SECTION_NO							SECTION_NO,

							G.GRADE_TYPE_CODE		GRADE_TYPE

FROM	SECTION	S,	COURSE	C,	ENROLLMENT	E,	GRADE	G

WHERE	C.course_no	=	s.course_no

AND			s.section_id	=	e.section_id

AND			e.student_id	=	g.student_id

AND			c.course_no	=	25

AND			s.section_no	between	1	and	2

ORDER	BY	1,	4,	3)	grade_source

The	results	of	the	SELECT	statement	using	the	median_grade	function	for	all	grade
types	in	sections	1	and	2	of	course	25	would	be	as	follows:
Click	here	to	view	code	image

COURSE_NO		COURSE_NAME				SECTION_NO	GRADE_TYPE	MEDIAN_GRADE

–––-	––––––––––––	––––

							25		Intro	to	Programming				1	FI									98

							25		Intro	to	Programming				2	FI									71

							25		Intro	to	Programming				1	HM									76

							25		Intro	to	Programming				2	HM									83

							25		Intro	to	Programming				1	MT									86

							25		Intro	to	Programming				2	MT									89

							25		Intro	to	Programming				1	PA									91

							25		Intro	to	Programming				2	PA									97

							25		Intro	to	Programming				1	QZ									71

							25		Intro	to	Programming				2	QZ									78

10	rows	selected.

Lab	21.4:	Package	Instantiation	and	Initialization

After	this	lab,	you	will	be	able	to

	Create	Package	Variables	During	Initialization

The	first	time	a	session	makes	any	reference	to	a	package,	Oracle	instantiates	the	package.
If	multiple	sessions	are	connected	to	the	database	at	the	same	time,	each	will	have	its	own
instantiation	of	that	package.	The	package	is	loaded	into	the	SGA	of	the	database	instance,
which	makes	all	elements	of	the	package	available	in	memory.	Anything	in	the	SGA	will
be	accessed	more	quickly	than	if	the	database	needs	to	query	tables.

The	instantiation	process	means	the	following	steps	will	take	place:

1.	Public	constants	in	the	package	will	be	assigned	an	initial	value.

2.	Public	variables,	which	have	a	declaration	session,	will	be	assigned	an	initial	value.

3.	If	there	is	an	initialization	section	in	the	package	body,	it	will	be	executed.

Creating	Package	Variables	During	Initialization
The	first	time	a	package	is	called	within	a	user	session,	the	code	in	the	initialization
section	of	the	package	will	be	executed	if	it	exists.	This	step	is	done	only	once;	it	is	not
repeated	if	the	user	calls	other	procedures	or	functions	for	that	package.	The	initialization
section	encompasses	everything	between	the	BEGIN	statement	and	the	END	statement	of
the	package	body.	Variables,	cursors,	and	user-defined	data	types	used	by	numerous
procedures	and	functions	can	be	declared	once	at	the	beginning	of	the	package
specification	and	then	be	used	by	the	functions	and	procedures	within	the	package	without
having	to	declare	them	again.

The	following	example	creates	a	package	global	variable	called	v_current_date	in
the	student_api	package.

For	Example		ch21_22.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE		school_api	as

		v_current_date	DATE;

		PROCEDURE	Discount_Cost;

		FUNCTION	new_instructor_id

				RETURN	instructor.instructor_id%TYPE;

END	school_api;

The	following	script	adds	an	initialization	section	that	assigns	the	current	system	date	to
the	variable	v_current_date.	This	variable	can	then	be	used	in	any	procedure	in	the
package	that	needs	to	make	use	of	the	current	date.

For	Example		ch21_23.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	BODY	school_api	AS

		PROCEDURE	discount_cost

		IS

				CURSOR	c_group_discount

				IS

				SELECT	distinct	s.course_no,	c.description

						FROM	section	s,	enrollment	e,	course	c

					WHERE	s.section_id	=	e.section_id

				GROUP	BY	s.course_no,	c.description,

												e.section_id,	s.section_id

				HAVING	COUNT(*)	>=8;

		BEGIN

				FOR	r_group_discount	IN	c_group_discount

				LOOP

				UPDATE	course

							SET	cost	=	cost	*	.95

						WHERE	course_no	=	r_group_discount.course_no;

						DBMS_OUTPUT.PUT_LINE

								(‘A	5%	discount	has	been	given	to’

								||r_group_discount.course_no||’

							’||r_group_discount.description);

				END	LOOP;

			END	discount_cost;

		FUNCTION	new_instructor_id

				RETURN	instructor.instructor_id%TYPE

		IS

				v_new_instid	instructor.instructor_id%TYPE;

		BEGIN

				SELECT	INSTRUCTOR_ID_SEQ.NEXTVAL

						INTO	v_new_instid

						FROM	dual;

				RETURN	v_new_instid;

		EXCEPTION

				WHEN	OTHERS

					THEN

						DECLARE

								v_sqlerrm	VARCHAR2(250)	:=

											SUBSTR(SQLERRM,1,250);

						BEGIN

								RAISE_APPLICATION_ERROR(-20003,

								‘Error	in		instructor_id:	‘||v_sqlerrm);

						END;

		END	new_instructor_id;

BEGIN

		SELECT	trunc(sysdate,	‘DD’)

				INTO	v_current_date

				FROM	dual;

END	school_api;

Lab	21.5:	SERIALLY_REUSABLE	Packages

After	this	lab,	you	will	be	able	to

	Use	the	SERIALLY_REUSABLE	Pragma

In	the	last	section,	you	learned	how	to	load	objects	into	the	SGA	as	part	of	the
instantiation	process.	This	was	done	to	help	improve	performance	of	the	package.	This
process	has	some	drawbacks,	however.	The	objects	are	held	in	memory	and	can	produce
some	undesirable	side	effects	and	errors	if,	for	example,	a	package	cursor	is	left	open.
Moreover,	if	package	cursors	are	large,	they	can	hold	onto	a	large	amount	of	the	session’s
memory	and	then	fail	to	release	it.	To	avoid	these	side	effects,	you	can	make	use	of	the
SERIALLY_REUSABLE	pragma.

Using	the	SERIALLY_REUSABLE	Pragma
The	SERIALLY_REUSABLE	pragma	must	be	used	in	both	the	package	specification	and
the	package	body	if	you	want	to	take	advantage	of	what	it	has	to	offer.	This	pragma
identifies	the	package	as	serially	reusable.	When	a	package	is	marked	as	such,	then	the
package	state	can	be	reduced	from	the	entire	session	to	just	a	call	of	a	program	in	the
package.	The	result	is	the	opposite	of	the	initialization	advantage;	it	means	the	values	of
package	variables	and	other	elements	will	not	persist.	The	syntax	to	invoke	this	pragma	is
to	add	the	following	line	after	IS	in	the	package	header	and	body:

PRAGMA	SERIALLY_REUSABLE;

Here	are	some	points	to	keep	in	mind	when	using	serialized	packages:

	The	global	memory	for	serialized	packages	is	allocated	in	the	SGA,	not	in	the	user
global	area	(UGA).	This	approach	allows	the	package	work	area	to	be	reused.	Each
time	the	package	is	reused,	its	package-level	variables	are	initialized	to	their	default
values	or	to	NULL,	and	its	initialization	section	is	reexecuted.

	The	maximum	number	of	work	areas	needed	for	a	serialized	package	is	determined
by	the	number	of	concurrent	users	of	that	package.	The	increased	use	of	SGA
memory	is	offset	by	the	decreased	use	of	the	UGA	or	program	memory.	Moreover,
the	database	ages	out	work	areas	not	in	use	if	it	needs	to	reclaim	memory	from	the
SGA	for	other	requests.

	If	a	package	is	not	SERIALLY_REUSABLE,	its	package	state	is	stored	in	the	UGA
for	each	user.	Therefore,	the	amount	of	UGA	memory	needed	increases	linearly	with
the	number	of	users,	limiting	scalability.	The	package	state	can	persist	for	the	life	of
a	session,	locking	UGA	memory	until	the	session	ends.	In	some	applications,	such	as
Oracle	Office,	a	typical	session	lasts	several	days.

The	following	script	is	an	extremely	simple	example	that	illustrates	how	the
SERIALLY_REUSABLE	pragma	operates	(a	longer	example	would	be	needed	to	more
clearly	show	a	use	case	where	this	pragma	would	be	necessary).

For	Example		ch21_24.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	show_date

IS

		PRAGMA	SERIALLY_REUSABLE;

		the_date	DATE	:=	SYSDATE	+	4;

		PROCEDURE	display_DATE;

		PROCEDURE	set_date;

END	show_date;

/

CREATE	OR	REPLACE	PACKAGE	BODY	show_date

IS

		PRAGMA	SERIALLY_REUSABLE;

		PROCEDURE	display_DATE	IS

		BEGIN

				DBMS_OUTPUT.PUT_LINE	(‘The	date	is		’	||	show_date.the_date);

		END;

		—	Initialize	package	state

		PROCEDURE	set_date	IS

		BEGIN

				show_date.the_date	:=	sysdate;

		END;

END	show_date;

The	next	example	shows	a	PL/SQL	block	to	execute	this	procedure	and	illustrate	how	it
behaves.

For	Example		ch21_25.sql
Click	here	to	view	code	image

begin

					—	initialize	and	print	the	package	variable

					show_date.display_DATE;

					—	change	the	value	of	the	variable	the_date

					show_date.set_date;

					—	Display	the	new	value	of	variable	the_date

					show_date.display_DATE;

					end;

/

begin

					show_date.display_DATE;

end;

/

If	this	script	were	run	on	July	27,	2014,	the	result	of	this	would	be	as	follows:
anonymous	block	completed

The	date	is		31-JUL-14

The	date	is		27-JUL-14

anonymous	block	completed

The	date	is		31-JUL-14

The	example	shows	how	the	value	of	the	variable	the_date	changes	depending	on
how	it	is	called.	When	the	SERIALLY_REUSABLE	pragma	is	not	used,	the	value	of	a
package	variable	persists	in	memory	and	does	not	change	until	a	program	changes	it
programmatically.	In	this	case,	because	the	package	uses	the	SERIALLY_REUSABLE
pragma,	the	behavior	is	different.	The	first	time	the	package	is	called	in	a	PL/SQL	block,
the	initialization	section	of	the	package	is	called	and	the	value	of	the	variable	the_date
is	set	to	the	system	date	plus	four	days.	This	value	is	then	displayed.	Next,	the	procedure
show_date.set_date	is	executed	and	the	value	of	the_date	is	reset	to	be	the
system	date.	Because	the	SERIALLY_REUSABLE	pragma	has	been	used,	the	value	of
the_date	is	not	retained.	The	next	time	the	package	is	referenced	in	a	second	PL/SQL
block,	the	value	of	the_date	is	reset	by	the	initialization	section	of	the	package.

When	the	package	uses	the	pragma	SERIALLY_REUSABLE,	however,	the	package
state	is	kept	in	the	work	area	of	the	system	global	area.	The	package	state	will	persist	only
for	the	duration	of	a	server	call.	Once	that	call	completes,	the	work	area	is	flushed.	If
another	server	call	references	the	same	package,	Oracle	will	reinstantiate	the	package—
which	means	it	reinitializes	the	package.	Anything	that	changed	the	variables	in	the
package	will	be	lost.	Once	a	unit	of	work	is	complete,	the	Oracle	database	takes	care	of
the	following	tasks:

	Closes	any	open	cursors.

	Frees	some	nonreusable	memory

	Returns	the	package	instantiation	to	the	pool	of	reusable	instantiations	kept	for	this
package

Database	triggers,	stand-alone	SQL	statements,	and	any	other	type	of	PL/SQL
subprogram	cannot	access	a	package	that	makes	use	of	the	SERIALLY_REUSABLE
pragma.

Summary
In	this	chapter,	you	learned	how	to	create	packages.	You	first	investigated	the	details	of
the	package	specification	and	the	package	body.	You	also	learned	how	to	call	the	stored
package	and	explored	the	various	types	of	package	components	such	as	private	objects
and	cursor	variables.	Then	you	were	introduced	to	an	elaborate	package	that	pulled
together	many	of	the	concepts	discussed	in	this	and	other	chapters.	Initialization	of	the
package	was	addressed	in	terms	of	initialization	of	variables.	Additionally,	you	saw	how
to	prevent	Oracle	from	holding	onto	memory	by	using	the	SERIALLY_REUSABLE
pragma	in	the	package	definition.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

22.	Stored	Code

In	this	chapter,	you	will	learn	about

	Gathering	Information	about	Stored	Code

In	Chapter	19	you	learned	about	procedures,	in	Chapter	20	you	learned	about	functions,
and	in	Chapter	21	you	learned	about	the	process	of	grouping	functions	and	procedures	into
a	package.	Now	you	will	learn	more	about	what	it	means	to	have	code	bundled	into	a
package.	Numerous	data	dictionary	views	can	be	accessed	to	gather	information	about	the
objects	in	a	package.

Functions	in	packages	are	required	to	meet	additional	restrictions	to	be	used	in	a
SELECT	statement.	In	this	chapter,	you	will	learn	what	those	restrictions	are	and	how	to
enforce	them.	You	will	also	learn	an	advanced	technique	to	overload	a	function	or
procedure	so	that	it	executes	different	code	depending	on	the	type	of	parameter	passed	in.

Lab	22.1:	Gathering	Information	about	Stored	Code

After	this	lab,	you	will	be	able	to

	Get	Stored	Code	Information	from	the	Data	Dictionary

	Overload	Modules

Stored	programs	are	held	in	a	compiled	form	in	the	database.	Information	about	such
stored	programs	is	accessible	through	various	data	dictionary	views.	In	Chapter	19,	you
learned	about	two	data	dictionary	views:	USER_OBJECTS	and	USER_SOURCE.	In
Chapter	13,	you	learned	about	another	view,	USER_TRIGGERS.	A	few	other	data
dictionary	views	are	also	useful	for	obtaining	information	about	stored	code.	In	this	lab,
you	will	learn	how	to	take	advantage	of	these	options.

Getting	Stored	Code	Information	from	the	Data	Dictionary
The	Oracle	data	dictionary	contains	system	views	that	can	be	used	to	examine	all	the
stored	procedures,	functions,	and	packages	in	the	current	schema	of	the	database.	They
also	provide	the	current	status	of	the	stored	code.	The	primary	view	to	be	used	for	this
purpose	is	the	USER_OBJECTS	view	you	encountered	in	Chapter	11.	This	view	has
information	about	all	database	objects	in	the	schema	of	the	current	user.	In	contrast,	if	you
want	to	see	all	the	objects	in	other	schemas	to	which	the	current	user	has	access,	you
would	use	the	ALL_OBJECTS	view.	There	is	also	a	DBA_OBJECTS	view	that	lists	all
objects	in	the	database	regardless	of	privilege.	The	status	of	each	object	will	be	marked	as
either	VALID	or	INVALID.	That	status	can	change	from	VALID	to	INVALID	if	an
underlying	table	is	altered	or	if	privileges	on	a	referenced	object	are	revoked	by	the	creator
of	the	function,	procedure,	or	package.

The	following	SELECT	statement	lists	all	functions,	procedures,	and	packages	that	are

in	the	schema	of	the	current	user.

For	Example		ch22_1.sql
Click	here	to	view	code	image

SELECT	OBJECT_TYPE,	OBJECT_NAME,	STATUS

FROM			USER_OBJECTS

WHERE		OBJECT_TYPE	IN

					(‘FUNCTION’,	‘PROCEDURE’,	‘PACKAGE’,

						‘PACKAGE_BODY’)

ORDER	BY	OBJECT_TYPE;

The	user_source	view	in	the	data	dictionary	can	be	used	to	extract	the	source	code
for	procedures,	functions,	and	packages.	The	column	TEXT	holds	the	actual	source	code
text,	NAME	holds	the	name,	and	TYPE	indicates	if	it	is	a	function,	procedure,	package,	or
package	body.	The	text	is	listed	in	order	by	line	number	in	the	column	line.

The	following	example	creates	a	function	called	scode_at_line	that	provides	an
easy	mechanism	for	retrieving	the	text	from	a	stored	program	for	a	specified	line	number.

For	Example		ch22_2.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	FUNCTION	scode_at_line

			(i_name_in	IN	VARCHAR2,

				i_line_in	IN	INTEGER	:=	1,

				i_type_in	IN	VARCHAR2	:=	NULL)

RETURN	VARCHAR2

IS

		CURSOR	scode_cur	IS

				SELECT		text

						FROM		user_source

					WHERE		name	=	UPPER	(i_name_in)

							AND		(type	=	UPPER	(i_type_in)

								OR		i_type_in	IS	NULL)

							AND		line	=	i_line_in;

		scode_rec	scode_cur%ROWTYPE;

BEGIN

		OPEN	scode_cur;

		FETCH	scode_cur	INTO	scode_rec;

		IF	scode_cur%NOTFOUND

				THEN

						CLOSE	scode_cur;

						RETURN	NULL;

		ELSE

				CLOSE	scode_cur;

				RETURN	scode_rec.text;

		END	IF;

END;

This	function	is	useful	if	a	developer	receives	a	compilation	error	message	referring	to	a
particular	line	number	in	an	object.	The	developer	can	call	this	function	to	find	out	which
text	is	the	source	of	the	error.

The	scode_at_line	function	uses	three	parameters:

name_in		The	name	of	the	stored	object.

line_in		The	line	number	of	the	line	you	wish	to	retrieve.	The	default	value	is	1.

type_in		The	type	of	object	you	want	to	view.	The	default	for	type_in	is	NULL.

The	default	values	are	designed	to	make	this	function	as	easy	as	possible	to	use.

By	the	Way

The	output	from	a	call	to	SHOW	ERRORS	in	SQL*Plus	displays	the	line
number	in	which	an	error	occurred,	but	the	line	number	doesn’t	correspond	to
the	line	in	your	text	file.	Instead,	it	relates	directly	to	the	line	number	stored
with	the	source	code	in	the	USER_SOURCE	view.

You	can	use	the	USER_ERRORS	view	to	get	more	details	about	compilation	errors	that
occur	when	you	are	writing	code.	This	view	stores	current	errors	on	the	user’s	stored
objects.	The	text	file	contains	the	text	of	the	error—a	handy	feature	when	you	are	trying	to
pin	down	the	details	of	a	compilation	error.	Following	are	the	columns	for	the
USER_ERRORS	view	that	you	would	see	if	you	entered	the	command	DESC
USER_ERRORS	in	SQL*Plus.
Click	here	to	view	code	image

Name																		Null?					Type

––––––—		––—		–––—

NAME																		NOT	NULL		VARCHAR2(30)

TYPE																												VARCHAR2(12)

SEQUENCE														NOT	NULL		NUMBER

LINE																		NOT	NULL		NUMBER

POSITION														NOT	NULL		NUMBER

TEXT																		NOT	NULL		VARCHAR2(2000)

The	following	code	fragment	produces	a	forced	error	so	that	we	can	demonstrate	the
various	methods	used	to	debug	a	problem:
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	FORCE_ERROR

as

BEGIN

		SELECT	course_no

		INTO	v_temp

		FROM	course;

END;

In	SQL	Developer,	the	errors	would	then	be	seen	in	the	compiler	log	screen.	In	SQL*Plus,
you	need	to	type	SHO	ERR	to	see	the	same	information.	In	either	case,	the	errors	will	be
shown	as	follows:
Click	here	to	view	code	image

Errors	for	PROCEDURE	FORCE_ERROR:

LINE/COL	ERROR

––—	––––––––––––––—

4/4												PL/SQL:	SQL	Statement	ignored

5/9													PLS-00201:	identifier	‘V_TEMP’	must	be	declared

6/4												PL/SQL:	ORA-00904:	:	invalid	identifier

You	can	use	a	SELECT	statement	to	retrieve	information	from	the	USER_ERRORS

view:
Click	here	to	view	code	image

SELECT	line||’/’||position	“LINE/COL”,	TEXT	“ERROR”

FROM	user_errors

WHERE	name	=	‘FORCE_ERROR’

It	is	important	to	know	how	to	retrieve	this	information	from	the	USER_ERRORS	view
because	the	SHO	ERR	command	simply	brings	up	the	most	recent	errors.	If	you	run	a
script	creating	a	number	of	objects,	then	you	must	rely	on	the	USER_ERRORS	view	to
identify	all	of	the	errors.

The	USER_DEPENDENCIES	view	is	useful	for	analyzing	how	table	changes	or
changes	to	other	stored	procedures	affect	other	parts	of	the	script.	If	you	plan	to	redesign
tables,	for	example,	you	might	want	to	assess	their	impact	by	examining	the	information
in	this	view.	The	ALL_DEPENDENCIES	and	DBA_DEPENDENCIES	views	show	all
dependencies	for	procedures,	functions,	package	specifications,	and	package	bodies.
Entering	the	command	DESC	USER_DEPENDENCIES	in	SQL&*Plus	produces	the
following	output:
Click	here	to	view	code	image

Name																												Null?				Type

––––––––––-	––—	–-

NAME																												NOT	NULL	VARCHAR2(30)

TYPE																																					VARCHAR2(12)

REFERENCED_OWNER																									VARCHAR2(30)

REFERENCED_NAME																	NOT	NULL	VARCHAR2(30)

REFERENCED_TYPE																										VARCHAR2(12)

REFERENCED_LINK_NAME																					VARCHAR2(30)

The	following	SELECT	statement	demonstrates	the	dependencies	for	the
school_api	package:

SELECT	referenced_name

FROM	user_dependencies

WHERE	name	=	‘SCHOOL_API’;

This	is	the	result	of	running	the	SELECT	statement:
REFERENCED_NAME

–––––––––—

STANDARD

STANDARD

DUAL

DBMS_STANDARD

DBMS_OUTPUT

COURSE

ENROLLMENT

INSTRUCTOR

INSTRUCTOR

INSTRUCTOR_ID_SEQ

SCHOOL_API

SECTION

This	list	of	dependencies	for	the	school_api	package	lists	all	objects	referenced	in	the
package.	It	includes	tables,	sequences,	and	procedures	(even	Oracle-supplied	packages).
This	information	is	very	useful	when	you	are	planning	a	change	to	a	database	structure.

You	can	easily	pinpoint	what	the	ramifications	are	for	any	database	changes.

The	DESC	command	in	SQL*Plus	is	used	to	describe	the	columns	in	a	table	as	well	as
to	identify	procedures,	packages,	and	functions.	This	command	shows	all	the	parameters
with	their	default	values	and	indicates	whether	they	are	IN	or	OUT.	If	the	object	is	a
function,	then	the	return	data	type	is	displayed.	This	is	very	different	from	the
USER_DEPENDENCIES	view,	which	provides	information	on	all	the	objects	that	are
referenced	in	a	package,	function,	or	procedure.	In	SQL	Developer,	the	same	information
can	be	obtained	by	finding	the	name	of	the	object	in	the	tree	and	hovering	the	cursor	over
the	name.

Overloading	Modules
When	you	overload	modules,	you	give	two	or	more	modules	the	same	name.	The
parameter	lists	of	the	modules	must	differ	in	a	manner	significant	enough	for	the	compiler
(and	run-time	engine)	to	distinguish	between	the	different	versions.

You	can	overload	modules	in	three	contexts:

1.	In	a	local	module	in	the	same	PL/SQL	block

2.	In	a	package	specification

3.	In	a	package	body

The	following	changes	to	the	school_api	package	demonstrate	how	module
overloading	can	be	used.

For	Example		ch22_3.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE		school_api	as

		v_current_date	DATE;

		PROCEDURE	Discount_Cost;

		FUNCTION	new_instructor_id

		RETURN	instructor.instructor_id%TYPE;

						FUNCTION	total_cost_for_student

							(i_student_id	IN	student.student_id%TYPE)

				RETURN	course.cost%TYPE;

					PRAGMA	RESTRICT_REFERENCES

								(total_cost_for_student,	WNDS,	WNPS,	RNPS);

		PROCEDURE	get_student_info

				(i_student_id			IN		student.student_id%TYPE,

					o_last_name				OUT	student.last_name%TYPE,

					o_first_name			OUT	student.first_name%TYPE,

					o_zip										OUT	student.zip%TYPE,

					o_return_code		OUT	NUMBER);

		PROCEDURE	get_student_info

				(i_last_name			IN		student.last_name%TYPE,

					i_first_name		IN		student.first_name%TYPE,

					o_student_id		OUT	student.student_id%TYPE,

					o_zip									OUT	student.zip%TYPE,

					o_return_code	OUT	NUMBER);

	END	school_api;

In	this	example	of	an	overloaded	procedure,	the	specification	has	two	procedures	with

the	same	name	and	different	IN	parameters	(different	both	in	number	and	in	data	type).
The	OUT	parameters	are	also	different	in	number	and	data	type.	This	overloaded	function
accepts	either	of	the	two	sets	of	IN	parameters	and	performs	the	version	of	the	function
corresponding	to	the	data	type	passed	in.	The	next	example	contains	the	package	body.
For	Example		ch22_4.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	BODY	school_api	AS

		PROCEDURE	discount_cost

		IS

				CURSOR	c_group_discount

				IS

				SELECT	distinct	s.course_no,	c.description

						FROM	section	s,	enrollment	e,	course	c

					WHERE	s.section_id	=	e.section_id

				GROUP	BY	s.course_no,	c.description,

													e.section_id,	s.section_id

				HAVING	COUNT(*)	>=8;

		BEGIN

				FOR	r_group_discount	IN	c_group_discount

				LOOP

				UPDATE	course

						SET	cost	=	cost	*	.95

						WHERE	course_no	=	r_group_discount.course_no;

						DBMS_OUTPUT.PUT_LINE

							(‘A	5%	discount	has	been	given	to’

							||r_group_discount.course_no||’

						’||r_group_discount.description);

				END	LOOP;

			END	discount_cost;

			FUNCTION	new_instructor_id

					RETURN	instructor.instructor_id%TYPE

			IS

					v_new_instid	instructor.instructor_id%TYPE;

			BEGIN

							SELECT	INSTRUCTOR_ID_SEQ.NEXTVAL

									INTO	v_new_instid

									FROM	dual;

							RETURN	v_new_instid;

			EXCEPTION

					WHEN	OTHERS

						THEN

								DECLARE

										v_sqlerrm	VARCHAR2(250)	:=

												SUBSTR(SQLERRM,1,250);

								BEGIN

										RAISE_APPLICATION_ERROR(-20003,

										‘Error	in			instructor_id:	‘||v_sqlerrm);

								END;

			END	new_instructor_id;

		FUNCTION	total_cost_for_student

				(i_student_id	IN	student.student_id%TYPE)

					RETURN	course.cost%TYPE

		IS

				v_cost	course.cost%TYPE;

		BEGIN

						SELECT	sum(cost)

								INTO	v_cost

								FROM	course	c,	section	s,	enrollment	e

							WHERE	c.course_no	=	s.course_no

									AND	e.section_id	=	s.section_id

									AND	e.student_id	=	i_student_id;

						RETURN	v_cost;

		EXCEPTION

				WHEN	OTHERS	THEN

						RETURN	NULL;

		END	total_cost_for_student;

	PROCEDURE	get_student_info

		(i_student_id		IN		student.student_id%TYPE,

			o_last_name			OUT	student.last_name%TYPE,

			o_first_name		OUT	student.first_name%TYPE,

			o_zip									OUT	student.zip%TYPE,

			o_return_code	OUT	NUMBER)

		IS

		BEGIN

			SELECT	last_name,	first_name,	zip

					INTO	o_last_name,	o_first_name,	o_zip

					FROM	student

				WHERE	student.student_id	=	i_student_id;

			o_return_code	:=	0;

		EXCEPTION

				WHEN	NO_DATA_FOUND

				THEN

						DBMS_OUTPUT.PUT_LINE

								(‘Student	ID	is	not	valid.’);

						o_return_code	:=	-100;

						o_last_name	:=	NULL;

						o_first_name	:=	NULL;

						o_zip		:=	NULL;

			WHEN	OTHERS

				THEN

						DBMS_OUTPUT.PUT_LINE

								(‘Error	in	procedure	get_student_info’);

		END	get_student_info;

		PROCEDURE	get_student_info

			(i_last_name			IN		student.last_name%TYPE,

				i_first_name		IN		student.first_name%TYPE,

				o_student_id		OUT	student.student_id%TYPE,

				o_zip									OUT	student.zip%TYPE,

				o_return_code	OUT	NUMBER)

		IS

		BEGIN

			SELECT	student_id,	zip

					INTO	o_student_id,	o_zip

					FROM	student

				WHERE	UPPER(last_name)	=	UPPER(i_last_name)

						AND	UPPER(first_name)	=	UPPER(i_first_name);

			o_return_code	:=	0;

		EXCEPTION

			WHEN	NO_DATA_FOUND

				THEN

						DBMS_OUTPUT.PUT_LINE

								(‘Student	name	is	not	valid.’);

						o_return_code	:=	-100;

						o_student_id	:=	NULL;

						o_zip		:=	NULL;

			WHEN	OTHERS

				THEN

						DBMS_OUTPUT.PUT_LINE

									(‘Error	in	procedure	get_student_info’);

		END	get_student_info;

		BEGIN

				SELECT	TRUNC(sysdate,	‘DD’)

						INTO	v_current_date

						FROM	dual;

END	school_api;

In	this	version	of	the	school_api,	a	single	function	name,	get_student_info,
accepts	either	a	single	IN	parameter	of	student_id	or	two	parameters	consisting	of	a
student’s	last_name	and	first_name.	If	a	number	is	passed	in,	then	the	procedure
looks	for	the	name	and	ZIP	code	of	the	student.	If	it	finds	them,	they	are	returned	along
with	a	return	code	of	0.	If	they	cannot	be	found,	then	null	values	are	returned	along	with	a
return	code	of	100.	If	two	VARCHAR2	parameters	are	passed	in,	then	the	procedure
searches	for	the	student_id	corresponding	to	the	names	passed	in.	As	with	the	other
version	of	this	procedure,	if	a	match	is	found,	the	procedure	returns	a	student_id,	the
student’s	ZIP	code,	and	a	return	code	of	0.	If	a	match	is	not	found,	then	the	values	returned
are	null	and	the	exit	code	is	100.

PL/SQL	uses	overloading	in	many	common	functions	and	built-in	packages.	For
example,	TO_CHAR	converts	both	numbers	and	dates	to	strings.	Overloading	makes	it
easy	for	other	programmers	to	use	your	code	in	an	API.

The	main	benefits	of	overloading	are	threefold.	First,	overloading	simplifies	the	call
interface	of	packages	and	reduces	many	program	names	to	one.	Second,	modules	are
easier	to	use	and	hence	more	likely	to	be	used.	The	software	determines	the	context.
Third,	the	volume	of	code	is	reduced	because	the	code	required	for	different	data	types	is
often	the	same.

Watch	Out!

The	rules	for	overloading	are	as	follows:	(1)	The	compiler	must	be	able	to
distinguish	between	the	two	calls	at	run	time.	Distinguishing	between	the	uses
of	the	overloaded	module	is	what	is	important—not	solely	the	differences	in
the	specification	or	header.	(2)	The	formal	parameters	must	differ	in	number,
order,	or	data	type	family.	(3)	You	cannot	overload	the	names	of	stand-alone
modules.	(4)	Functions	differing	only	in	RETURN	data	types	cannot	be
overloaded.

The	following	PL/SQL	block	shows	how	this	overloaded	function	can	be	used:
Click	here	to	view	code	image

DECLARE

		v_student_ID		student.student_id%TYPE;

		v_last_name			student.last_name%TYPE;

		v_first_name		student.first_name%TYPE;

		v_zip									student.zip%TYPE;

		v_return_code	NUMBER;

BEGIN

		school_api.get_student_info

				(&&p_id,	v_last_name,	v_first_name,

					v_zip,v_return_code);

		IF	v_return_code	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE

						(‘Student	with	ID	‘||&&p_id||’	is	‘||v_first_name

					||’	‘||v_last_name

);

		ELSE

		DBMS_OUTPUT.PUT_LINE

				(‘The	ID	‘||&&p_id||‘is	not	in	the	database’

);

		END	IF;

		school_api.get_student_info

				(&&p_last_name	,	&&p_first_name,	v_student_id,

					v_zip	,	v_return_code);

		IF	v_return_code	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE

						(&&p_first_name||’	‘||	&&p_last_name||

							’	has	an	ID	of	‘||v_student_id);

		ELSE

		DBMS_OUTPUT.PUT_LINE

				(&&p_first_name||’	‘||	&&p_last_name||

					‘is	not	in	the	database’

);

		END	IF;

END;

When	you	run	this	script,	you	will	be	prompted	for	these	three	values.	Here	is	an
example	of	a	valid	value	to	enter	as	the	input:
Click	here	to	view	code	image

Enter	value	for	p_id:	149

Enter	value	for	p_last_name:	‘Prochaska’

Enter	value	for	p_first_name:	‘Judith’

This	example	demonstrates	the	benefits	of	using	a	&&	variable.	The	value	for	the
variable	need	be	entered	only	once,	but	if	you	run	the	code	a	second	time,	you	will	not	be
prompted	to	enter	the	value	again	because	it	is	now	in	memory.

Here	are	a	few	points	to	keep	in	mind	when	you	overload	functions	or	procedures.
These	two	procedures	cannot	be	overloaded:
Click	here	to	view	code	image

PROCEDURE	calc_total	(reg_in	IN	CHAR);

				PROCEDURE	calc_total	(reg_in	IN	VARCHAR2).

In	these	two	versions	of	calc_total,	the	two	different	IN	variables	cannot	be
distinguished	from	each	other.	In	the	following	example,	an	anchored	type	(%TYPE)	is
relied	on	to	establish	the	data	type	of	the	second	calc’s	parameter.
Click	here	to	view	code	image

DECLARE

				PROCEDURE	calc	(comp_id_IN	IN	NUMBER)

						IS

				BEGIN	…	END;

				PROCEDURE	calc

				(comp_id_IN	IN	company.comp_id%TYPE)

						IS

				BEGIN	…	END;

PL/SQL	does	not	find	a	conflict	at	compile	time	with	overloading	even	though	comp_id
is	a	numeric	column.	Instead,	you	will	see	the	following	message	at	run	time:
Click	here	to	view	code	image

PLS-00307:	too	many	declarations	of	‘<program>’	match	this	call

Summary
In	this	chapter,	you	learned	about	the	various	data	dictionary	views	that	can	be	used	to
gather	information	about	stored	code.	These	views	enable	you	to	obtain	information	about
the	parameters	and	dependencies	of	the	functions,	procedures,	and	packages.	You	also
learned	about	how	to	overload	functions	and	procedures	so	that	the	same	object	can	be
used	in	different	ways	depending	on	how	many	and	which	type	of	values	are	passed	to	the
calling	function	or	procedure.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

23.	Object	Types	in	Oracle

In	this	chapter,	you	will	learn	about

	Object	Types

	Object	Type	Methods

In	Oracle,	object	types	are	the	main	ingredient	of	object-oriented	programming.	They	are
used	to	model	real-world	tangible	entities,	such	as	students,	instructors,	and	bank
accounts,	as	well	as	abstract	entities,	such	as	ZIP	codes,	geometrical	shapes,	and	chemical
reactions.

In	this	chapter,	you	will	learn	how	to	create	object	types,	and	how	to	nest	object	types
within	collection	types.	In	addition,	you	will	learn	about	different	kinds	of	object	type
methods	and	their	usage.

This	chapter	is	introductory	in	nature	and	does	not	cover	more	advanced	topics	such	as
object	type	inheritance	and	evolution,	REF	modifiers,	and	object	type	tables	(not	to	be
confused	with	collections).	These	topics,	along	with	many	others,	are	covered	in	Oracle’s
documentation—specifically,	Oracle’s	Database	Object-Relational	Developer’s	Guide.

Lab	23.1:	Object	Types

After	this	lab,	you	will	be	able	to

	Create	Object	Types

	Use	Object	Types	with	Collections

Object	types	generally	consist	of	two	parts:	attributes	(data)	and	methods	(functions	and
procedures).	Attributes	are	essential	characteristics	that	describe	the	object	type.	For
example,	some	attributes	of	the	student	object	type	may	be	first	and	last	names,	contact
information,	and	enrollment	information.	Methods	are	functions	and	procedures	defined	in
an	object	type;	they	are	optional.	They	represent	actions	that	are	likely	to	be	performed	on
the	object	attributes.	For	example,	methods	of	the	student	object	type	might	update	the
student	contact	information,	get	the	student’s	name,	or	display	the	student’s	information.

By	combining	attributes	and	methods,	object	types	facilitate	encapsulation	of	data	with
the	operations	that	may	be	performed	on	that	data.	As	an	example,	Figure	23.1	shows	the
object	type	Student.	Some	of	the	attributes	of	the	Student	object	type	are	Student
ID,	First	Name,	Zip,	and	Employer,	and	some	of	the	methods	are	Update
Contact	Info,	Get	Student	ID,	and	Get	Student	Name.	Figure	23.1	also
shows	two	instances	of	the	object	type,	Student	1	and	Student	2.	An	object
instance	is	a	value	of	an	object	type.	In	other	words,	the	instances	Student	1	and
Student	2	of	the	Student	object	type	contain	actual	student	data	so	that	the	Get
Student	ID	method	returns	student	ID	102	for	instance	Student	1	and	103	for

instance	Student	2.

Figure	23.1	Object	Type	Student

Did	You	Know?

An	object	instance	is	often	referred	to	simply	as	an	object.

In	Oracle,	an	object	type	is	created	with	the	CREATE	OR	REPLACE	TYPE	clause	and
is	stored	in	the	database	schema.	As	a	consequence,	object	types	cannot	be	created	within
a	PL/SQL	block	or	stored	subprogram.	Once	an	object	type	has	been	created	and	stored	in
the	database	schema,	a	PL/SQL	block	or	subprogram	may	reference	that	object	type.

Creating	Object	Types
The	general	syntax	for	creating	an	object	type	is	shown	in	Listing	23.1	(the	reserved
words	and	phrases	surrounded	by	brackets	are	optional):

Listing	23.1	Create	Object	Type
Click	here	to	view	code	image

CREATE	[OR	REPLACE]	TYPE	type_name	AS	OBJECT

		(attribute_name1	attribute_type,

			attribute_name2	attribute_type,

			…

			attribute_nameN	attribute_type,

			[method1	specification],

			[method2	specification],

			…

			[methodN	specification]);

[CREATE	[OR	REPLACE]	TYPE	BODY	type_name	AS

		method1	body;

		method2	body;

		…

		methodN	body;]

END;

Notice	that	the	creation	of	an	object	type	includes	two	parts:	the	object	type
specification	and	the	object	type	body.	The	object	type	specification	contains	declarations
of	attributes	as	well	as	any	methods	that	may	be	used	with	that	object.	The
attribute_type	may	be	a	built-in	PL/SQL	type	such	as	NUMBER	or	VARCHAR2,	or	it
may	be	a	complex	user-defined	type	such	as	a	collection,	record,	or	other	object	type.	The
method	specification	consists	of	the	method	type,	its	name,	and	any	input	and	output
parameters	the	method	needs.

Object	specification	is	required	when	creating	an	object	type.	Any	attributes	and
methods	defined	in	the	object	type	specification	are	visible	to	the	outside	world	(such	as	a
PL/SQL	block,	subprogram,	or	Java	application).	The	object	type	specification	is	also
called	a	public	interface,	and	the	methods	defined	in	it	are	called	public	methods.	As
mentioned	earlier,	methods	are	optional	when	creating	object	types.	However,	if	an	object
type	has	a	method	specification,	it	requires	an	object	type	body.

The	object	type	body	is	optional	when	creating	an	object	type.	This	part	of	the	script
contains	the	bodies	(executable	statements)	of	the	methods	defined	in	the	object	type
specification.	In	addition,	the	object	type	body	may	contain	methods	that	have	not	been
defined	in	the	object	type	specification.	These	methods	are	private—that	is,	they	are	not
visible	to	the	outside	world.	Some	types	of	methods	that	might	be	specified	as	private	are
constructor,	member,	and	static	methods.	Different	method	types,	their	usage,	and
restrictions	are	discussed	in	detail	in	Lab	23.2.

Note	that	the	concepts	explained	to	this	point	are	very	similar	to	those	you	learned
about	in	Chapter	21,	dealing	with	packages.	Thus,	rules	that	apply	to	the	package
specification	and	body	mostly	apply	to	the	object	type	specification	and	body	as	well.	For
example,	the	header	of	the	method	defined	in	the	object	type	specification	must	match	the
method	header	in	the	object	type	body.

Consider	the	following	example	of	the	zipcode_obj_type	object	type
specification.

For	Example		ch23_1a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	zipcode_obj_type	AS	OBJECT

		(zip														VARCHAR2(5)

		,city													VARCHAR2(25)

		,state												VARCHAR2(2)

		,created_by							VARCHAR2(30)

		,created_date					DATE

		,modified_by						VARCHAR2(30)

		,modified_date				DATE);

This	object	type	does	not	have	any	methods	associated	with	it,	and	its	syntax	is	somewhat
similar	to	the	CREATE	TABLE	syntax.

Once	this	object	type	has	been	created,	it	can	be	used	as	demonstrated	in	the	following
example:

For	Example		ch23_2a.sql
Click	here	to	view	code	image

DECLARE

		zip_obj	zipcode_obj_type;

BEGIN

		SELECT	zipcode_obj_type(zip,	city,	state,	null,	null,	null,	null)

				INTO	zip_obj

				FROM	zipcode

			WHERE	zip	=	‘06883’;

		DBMS_OUTPUT.PUT_LINE	(‘Zip:			’||zip_obj.zip);

		DBMS_OUTPUT.PUT_LINE	(‘City:		’||zip_obj.city);

		DBMS_OUTPUT.PUT_LINE	(‘State:	‘||zip_obj.state);

END;

This	script	defines	an	instance	zip_obj	of	the	object	type	zip_code_obj_type.	It
then	initializes	some	of	the	object	attributes	and	displays	those	values	on	the	screen.

The	object	attributes	are	initialized	via	the	SELECT	INTO	statement.	Note	how	the
SELECT	clause	uses	an	object	type	constructor.	Recall	that	you	learned	about	constructors
for	nested	table	types	in	Chapter	15.	Default	constructors	for	object	types	are	similar	in
that	they	are	system-defined	functions	that	have	the	same	name	as	the	corresponding
object	type.	In	Lab	23.2,	you	will	learn	how	to	define	your	own	constructor	functions.

When	run,	the	preceding	script	produces	this	output:
Zip:			06883

City:		Weston

State:	CT

When	an	object	instance	is	defined,	its	value	is	null.	This	means	that	not	only	its
individual	attributes	are	null,	but	the	object	itself	is	also	null.	The	object	remains	null	until
its	constructor	method	is	called,	as	illustrated	in	the	next	example.

For	Example		ch23_3a.sql
Click	here	to	view	code	image

DECLARE

		zip_obj	zipcode_obj_type;

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘Object	instance	has	not	been	initialized’);

		IF	zip_obj	IS	NULL

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj	instance	is	null’);

		ELSE

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj	instance	is	not	null’);

		END	IF;

		IF	zip_obj.zip	IS	NULL

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj.zip	is	null’);

		END	IF;

		—	Initialize	zip_obj_instance

		zip_obj	:=	zipcode_obj_type(null,	null,	null,	null,	null,	null,	null);

		DBMS_OUTPUT.PUT_LINE	(‘Object	instance	has	been	initialized’);

		IF	zip_obj	IS	NULL

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj	instance	is	null’);

		ELSE

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj	instance	is	not	null’);

		END	IF;

		IF	zip_obj.zip	IS	NULL

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj.zip	is	null’);

		END	IF;

END;

When	run,	this	script	produces	the	following	output:
Click	here	to	view	code	image

Object	instance	has	not	been	initialized

zip_obj	instance	is	null

zip_obj.zip	is	null

Object	instance	has	been	initialized

zip_obj	instance	is	not	null

zip_obj.zip	is	null

As	you	can	see,	both	the	object	instance	and	its	attributes	are	null	prior	to	the
initialization.	Once	the	object	instance	has	been	initialized	with	the	help	of	its	default
constructor,	it	is	no	longer	null,	even	though	its	individual	attributes	remain	null.

Watch	Out!

Referencing	individual	attributes	of	an	uninitialized	object	instance	causes	an
ORA-06530	exception,	“Reference	to	uninitialized	composite	error”:
Click	here	to	view	code	image

DECLARE

		zip_obj	zipcode_obj_type;

BEGIN

		zip_obj.zip	:=	‘12345’;

END;

ORA-06530:	Reference	to	uninitialized	composite

ORA-06512:	at	line	4

It	is	a	good	practice	to	always	initialize	any	newly	created	object	type
instance.

Using	Object	Types	with	Collections
As	mentioned	previously,	object	types	and	collection	types	may	be	nested	inside	one
another.	Consider	the	following	example,	which	includes	a	collection	of	ZIP	code	objects.

For	Example		ch23_4a.sql
Click	here	to	view	code	image

DECLARE

		TYPE	zip_type	IS	TABLE	OF	zipcode_obj_type	INDEX	BY	PLS_INTEGER;

		zip_tab	zip_type;

BEGIN

		SELECT	zipcode_obj_type(zip,	city,	state,	null,	null,	null,	null)

				BULK	COLLECT	INTO	zip_tab

				FROM	zipcode

			WHERE	rownum	<=	5;

		IF	zip_tab.COUNT	>	0

		THEN

				FOR	i	in	1..zip_tab.count

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘Zip:			’||zip_tab(i).zip);

						DBMS_OUTPUT.PUT_LINE	(‘City:		’||zip_tab(i).city);

						DBMS_OUTPUT.PUT_LINE	(‘State:	‘||zip_tab(i).state);

						DBMS_OUTPUT.PUT_LINE	(‘–––––––—’);

				END	LOOP;

		ELSE

				DBMS_OUTPUT.PUT_LINE	(‘Collection	of	objects	is	empty’);

		END	IF;

END;

This	example	declares	an	associative	array	type	zip_type	of	object	type
zipcode_obj_type.	Next,	it	declares	a	collection	variable	zip_tab	based	on	the
newly	created	associative	array	type.	It	then	populates	this	collection	of	objects	via	a
BULK	SELECT	statement.	Finally,	it	checks	whether	the	collection	has	been	populated
via	the	IF	statement	and	displays	its	data	on	the	screen.

Note	how	individual	object	type	attributes	are	referenced	by	the
DBMS_OUTPUT.PUT_LINE	statement.	Each	attribute	is	prefixed	by	the	collection	name
and	row	subscript	without	any	reference	to	the	object	type	itself.

When	run,	this	example	produces	the	following	output:
Zip:			00914

City:		Santurce

State:	PR

–––––––—

Zip:			01247

City:		North	Adams

State:	MA

–––––––—

Zip:			02124

City:		Dorchester

State:	MA

–––––––—

Zip:			02155

City:		Tufts	Univ.	Bedford

State:	MA

–––––––—

Zip:			02189

City:		Weymouth

State:	MA

–––––––—

In	this	example,	you	saw	how	to	populate	an	associative	array	of	objects	with	data.
PL/SQL	also	supports	selecting	the	data	from	collection	of	objects.	In	such	a	case,	the
collection	type	should	be	a	nested	table	or	varray	type	that	is	created	and	stored	in	the
database	schema	just	like	its	corresponding	object	type.	This	usage	is	illustrated	by	the
following	example.

For	Example		ch23_5a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	zip_tab_type	AS	TABLE	OF	zipcode_obj_type;

/

DECLARE

		zip_tab	zip_tab_type	:=	zip_tab_type();

		v_zip			VARCHAR2(5);

		v_city		VARCHAR2(20);

		v_state	VARCHAR2(2);

BEGIN

		SELECT	zipcode_obj_type(zip,	city,	state,	null,	null,	null,	null)

				BULK	COLLECT	INTO	zip_tab

				FROM	zipcode

			WHERE	rownum	<=	5;

		SELECT	zip,	city,	state

				INTO	v_zip,	v_city,	v_state

				FROM	TABLE(zip_tab)

			WHERE	rownum	<	2;

		DBMS_OUTPUT.PUT_LINE	(‘Zip:			’||v_zip);

		DBMS_OUTPUT.PUT_LINE	(‘City:		’||v_city);

		DBMS_OUTPUT.PUT_LINE	(‘State:	‘||v_state);

END;

First,	this	script	creates	a	nested	table	type,	zip_tab_type,	in	the	STUDENT	schema.
This	table	type	is	then	used	by	the	PL/SQL	block.	Creating	and	storing	a	nested	table	type
in	the	STUDENT	schema	enables	you	to	use	the	TABLE	function	in	the	SELECT	INTO
statement	to	select	data	from	the	collection	of	objects	into	the	v_zip,	v_city,	and
v_state	variables.	Recall	that	the	TABLE	function	enables	you	to	query	a	collection	as
if	it	were	a	physical	database	table.

When	run,	this	example	produces	the	following	output:
Zip:			00914

City:		Santurce

State:	PR

So	far,	you	have	seen	various	examples	of	collections	of	objects.	PL/SQL	also	supports
nesting	a	collection	type	within	an	object	type.	Similarly	to	the	previous	examples,	both
collection	and	object	data	types	should	be	created	and	stored	in	the	database	schema.
Consider	an	example	of	a	state	object	type	that	has	two	collection	attributes,	cities,	and

ZIP	codes.

For	Example		ch23_6a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	city_tab_type	AS	TABLE	OF	VARCHAR2(25);

/

CREATE	OR	REPLACE	TYPE	zip_tab_type	AS	TABLE	OF	VARCHAR2(5);

/

CREATE	OR	REPLACE	TYPE	state_obj_type	AS	OBJECT

		(state	VARCHAR2(2)

		,city		city_tab_type

		,zip			zip_tab_type);

/

This	script	creates	two	nested	table	types,	city_tab_type	and	zip_tab_type,	in
the	STUDENT	schema.	Next,	it	creates	an	object	type,	state_obj_type,	that	has	three
attributes.	Note	that	the	city	and	zip	attributes	are	based	on	the	nested	table	types
created	earlier.

Next	consider	an	example	that	employs	the	newly	created	collection	and	object	types.

For	Example		ch23_7a.sql
Click	here	to	view	code	image

DECLARE

		city_tab		city_tab_type;

		zip_tab			zip_tab_type;

		state_obj	state_obj_type	:=	state_obj_type(null,	city_tab_type(),

zip_tab_type());

BEGIN

		SELECT	city,	zip

				BULK	COLLECT	INTO	city_tab,	zip_tab

				FROM	zipcode

			WHERE	state	=	‘NY’

						AND	rownum	<=	5;

		state_obj	:=	state_obj_type	(‘NY’,	city_tab,	zip_tab);

		DBMS_OUTPUT.PUT_LINE	(‘State:	‘||state_obj.state);

		DBMS_OUTPUT.PUT_LINE	(‘––––––––’);

		IF	state_obj.city.COUNT	>	0

		THEN

				FOR	i	in	state_obj.city.FIRST..state_obj.city.LAST

				LOOP

						DBMS_OUTPUT.PUT_LINE	(‘City:		’||state_obj.city(i));

						DBMS_OUTPUT.PUT_LINE	(‘Zip:			’||state_obj.zip(i));

				END	LOOP;

		END	IF;

END;

In	the	declaration	portion	of	the	script,	there	are	definitions	of	the	two	nested	table
variables,	city_tab	and	zip_tab,	based	on	the	city_tab_type	and	the
zip_tab_type,	respectively.	Also,	there	is	a	declaration	and	initialization	of	the	object
instance	state_obj	based	on	the	state_obj_type.	Because	the	city	and	zip

attributes	of	state_obj	are	nested	tables,	they	are	initialized	via	their	default
constructor	methods,	as	highlighted	here:
Click	here	to	view	code	image

state_obj	state_obj_type	:=	state_obj_type(null,	city_tab_type(),

zip_tab_type());

In	the	executable	portion	of	the	example,	the	two	nested	tables,	city_tab	and
zip_tab,	are	populated	via	a	SELECT	statement	with	a	BULK	COLLECT	INTO
clause.	Recall	that	when	nested	tables	are	populated	in	such	manner,	there	is	no	need	to
initialize	them	by	invoking	their	default	constructor	methods.	Next,	the	state_obj
instance	is	populated	by	invoking	its	default	constructor	method:
Click	here	to	view	code	image

state_obj	:=	state_obj_type	(‘NY’,	city_tab,	zip_tab);

In	this	case,	there	is	no	need	to	employ	default	constructor	methods	for	the	two	nested
table	attributes,	city	and	zip.	Instead,	the	city_tab	and	zip_tab	nested	tables	are
simply	passed	into	the	constructor	method	state_obj_type.

When	run,	this	script	produces	the	following	output:
State:	NY

––––––––

City:		Irvington

Zip:			07111

City:		Franklin	Lakes

Zip:			07417

City:		Alpine

Zip:			07620

City:		Oradell

Zip:			07649

City:		New	York

Zip:			10004

Lab	23.2:	Object	Type	Methods

After	this	lab,	you	will	be	able	to

	Use	Constructor	Methods

	Use	Member	Methods

	Use	Static	Methods

	Compare	Objects	Via	Map	and	Order	Methods

In	Lab	23.1,	you	learned	that	object	type	methods	are	functions	and	procedures	that
specify	actions	that	may	be	performed	on	the	object	type	attributes	and	are	defined	in	the
object	type	specification.	Also,	you	saw	how	to	use	the	default	system-defined	constructor
methods.	A	constructor	is	only	one	of	the	method	types	supported	by	PL/SQL.	Some	other
method	types	are	member,	static,	map,	and	order.	The	method	type	is	typically	determined
by	the	actions	that	a	particular	method	performs.	For	example,	constructor	methods	are
used	to	initialize	object	instances,	whereas	map	and	order	methods	are	used	for	comparing

and	sorting	object	instances,	respectively.

Oftentimes	object	type	methods	use	a	built-in	parameter	called	SELF.	This	parameter
represents	a	particular	instance	of	the	object	type.	As	such,	it	is	available	to	the	methods
that	are	invoked	on	that	object	type	instance.	You	will	see	various	examples	of	the	SELF
parameter	in	the	discussions	that	follow.

Constructor	Methods
A	constructor	method	is	a	default	method	that	is	implicitly	created	by	the	system
whenever	a	new	object	type	is	created.	This	function	has	the	same	name	as	its	object	type.
Its	input	parameters	have	the	same	names	and	data	types	as	the	object	type	attributes	and
are	listed	in	the	same	order	as	the	object	type	attributes.	A	constructor	method	returns	a
new	instance	of	the	object	type.	In	other	words,	it	initializes	the	new	object	instance	and
assigns	values	to	the	object	attributes.

Listing	23.2	illustrates	calls	to	the	default	constructor	method	for	the
zipcode_obj_type	created	in	Lab	23.1.

Listing	23.2	Default	Constructor	Method	for	Zipcode_Obj_Type
Click	here	to	view	code	image

zip_obj1	:=	ZIPCODE_OBJ_TYPE(‘00914’,	‘Santurce’,	‘PR’,	USER,	SYSDATE,

USER,	SYSDATE);

or
Click	here	to	view	code	image

zip_obj2	:=	ZIPCODE_OBJ_TYPE(NULL,	NULL,	NULL,	NULL,	NULL,	NULL	NULL);

The	first	call	to	the	constructor	method	returns	a	new	instance,	zip_obj1,	of	the
zipcode_obj_type	with	attributes	initialized	to	non-null	values.	The	second	call
creates	a	new	instance,	zip_obj2,	with	NULL	attribute	values.	Note	that	both	calls
produce	non-null	instances	of	the	zipcode_obj_type.	The	difference	between	them
lies	in	the	values	assigned	to	the	individual	attributes.

In	Listing	23.2,	both	calls	to	the	default	constructor	method	use	positional	notation.
Recall	that	positional	notation	associates	values	with	corresponding	parameters	based	on
their	positions	in	the	header	of	the	function,	procedure,	or	(in	this	case)	constructor.	Next,
consider	the	call	to	the	default	constructor	method	that	uses	named	notation.	In	this	case,
the	order	of	parameters	does	not	correspond	to	the	order	of	attributes	in	the
zipcode_obj_type,	as	they	are	referenced	by	their	names	as	shown	in	Listing	23.3.

Listing	23.3	Using	Positional	Notation	with	the	Default	Constructor	Method	for
Zipcode_Obj_Type

Click	here	to	view	code	image

zip_obj3	:=	ZIPCODE_OBJ_TYPE(created_by				=>	USER

																												,created_date		=>	SYSDATE

																												,modified_by			=>	USER

																												,modified_date	=>	SYSDATE

																												,zip											=>‘00914’

																												,city										=>	‘Santurce’

																												,state									=>	‘PR’);

As	noted	earlier,	PL/SQL	also	provides	you	with	the	ability	to	create	your	own	(user-
defined)	constructors.	User-defined	constructors	offer	flexibility	that	the	default
constructors	lack.	For	example,	you	might	want	to	define	a	constructor	on	the
zipcode_obj_type	that	initializes	only	some	of	the	attributes	of	the	newly	created
object	instance.	In	this	case,	any	attributes	for	which	you	do	not	specify	values	will	be
initialized	to	NULL	by	the	system.	In	addition,	you	can	control	the	number	and	type	of
parameters	that	your	constructor	may	require.

Consider	the	following	example	of	the	user-defined	constructors	for	the
zipcode_obj_type.

For	Example		ch23_8a.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	zipcode_obj_type	AS	OBJECT

		(zip												VARCHAR2(5)

		,city											VARCHAR2(25)

		,state										VARCHAR2(2)

		,created_by					VARCHAR2(30)

		,created_date			DATE

		,modified_by				VARCHAR2(30)

		,modified_date		DATE

		,CONSTRUCTOR	FUNCTION	zipcode_obj_type	(SELF	IN	OUT	NOCOPY

zipcode_obj_type

																																									,zip					VARCHAR2)

			RETURN	SELF	AS	RESULT

		,CONSTRUCTOR	FUNCTION	zipcode_obj_type	(SELF	IN	OUT	NOCOPY

zipcode_obj_type

																																									,zip					VARCHAR2

																																									,city				VARCHAR2

																																									,state			VARCHAR2)

			RETURN	SELF	AS	RESULT);

/

CREATE	OR	REPLACE	TYPE	BODY	zipcode_obj_type	AS

		CONSTRUCTOR	FUNCTION	zipcode_obj_type	(SELF	IN	OUT	NOCOPY

zipcode_obj_type

																																								,zip		VARCHAR2)

		RETURN	SELF	AS	RESULT

		IS

		BEGIN

				SELF.zip	:=	zip;

				SELECT	city,	state

						INTO	SELF.city,	SELF.state

						FROM	zipcode

					WHERE	zip	=	SELF.zip;

					RETURN;

		EXCEPTION

				WHEN	NO_DATA_FOUND	THEN

						RETURN;

		END;

		CONSTRUCTOR	FUNCTION	zipcode_obj_type	(SELF	IN	OUT	NOCOPY

zipcode_obj_type

																																								,zip				VARCHAR2

																																								,city			VARCHAR2

																																								,state		VARCHAR2)

		RETURN	SELF	AS	RESULT

		IS

		BEGIN

				SELF.zip			:=	zip;

				SELF.city		:=	city;

				SELF.state	:=	state;

				RETURN;

		END;

END;

/

This	script	expands	the	definition	of	the	zipcode_obj_type	by	providing	two
versions	of	the	default	constructor	method.	In	programming	terms,	such	approach	is	called
overloading.	Essentially,	overloading	allows	two	methods	or	subprograms	to	use	the	same
name	as	long	as	their	parameters	differ	in	terms	of	either	their	data	types	or	their	number.
In	the	preceding	example,	the	first	constructor	method	expects	two	parameters,	and	the
second	constructor	method	expects	four	parameters.

Both	constructors	use	the	default	parameter	SELF	as	an	IN	OUT	parameter	and	as	a
return	data	type	in	the	RETURN	clause.	As	stated	previously,	SELF	references	a	particular
object	type	instance.	Note	the	use	of	the	NOCOPY	compiler	hint.	This	hint	is	typically	used
with	OUT	and	IN	OUT	parameters.	By	default,	OUT	and	IN	OUT	parameters	are	passed
by	value.	As	a	consequence,	the	values	of	these	parameters	are	copied	prior	to	the
execution	of	the	subprogram	or	method.	Then,	during	the	execution,	temporary	variables
are	used	to	hold	values	of	the	OUT	parameters.	For	parameters	that	represent	complex	data
types	such	as	collections,	records,	and	object	type	instances,	this	copying	step	can	add
significant	processing	overhead.	By	adding	the	NOCOPY	hint,	you	instruct	PL/SQL
compiler	to	pass	OUT	and	IN	OUT	parameters	by	reference	and	eliminate	the	copying
step	altogether.

In	the	type	body,	both	constructor	methods	populate	the	city,	state,	and	zip
attributes.	The	first	constructor	method	accomplishes	this	work	via	a	SELECT	INTO
statement,	and	the	second	constructor	method	assigns	incoming	values	to	the	object
attributes.	Notice	how	the	attributes	are	referenced	via	the	SELF	parameter	in	the
constructor	methods.

Member	Methods
Member	methods	provide	access	to	the	object	instance	data.	As	such,	a	member	method
should	be	defined	for	each	action	that	an	object	type	must	perform.	For	example,	you	may
need	to	return	city,	state,	and	ZIP	code	values	associated	with	an	object	instance	to	the
calling	application,	as	shown	in	the	next	example.	Note	that	this	example	shows	only	the
newly	added	member	method.

For	Example		ch23_8b.sql

Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	zipcode_obj_type	AS	OBJECT

		…

		,MEMBER	PROCEDURE	get_zipcode_info	(out_zip			OUT	VARCHAR2

																																					,out_city		OUT	VARCHAR2

																																					,out_state	OUT	VARCHAR2));

/

CREATE	OR	REPLACE	TYPE	BODY	zipcode_obj_type	AS

		…

		MEMBER	PROCEDURE	get_zipcode_info	(out_zip			OUT	VARCHAR2

																																				,out_city		OUT	VARCHAR2

																																				,out_state	OUT	VARCHAR2)

		IS

		BEGIN

				out_zip			:=	SELF.zip;

				out_city		:=	SELF.city;

				out_state	:=	SELF.state;

		END;

END;

/

This	version	of	the	object	type	definition	contains	a	new	member	procedure	that	returns
the	ZIP	code,	city,	and	state	values	associated	with	a	particular	instance	of	the
zipcode_obj_type	object	type.	The	reference	to	the	SELF	parameter	in	this
procedure	is	optional,	however,	so	the	assignment	statements	can	be	modified	as	follows:

out_zip			:=	zip;

out_city		:=	city;

out_state	:=	state;

These	statements	initialize	OUT	parameters	associated	with	individual	attributes	of	a
particular	object	instance,	just	like	the	statements	that	include	the	reference	to	the	SELF
parameter.

Static	Methods
Static	methods	are	created	for	actions	that	do	not	need	to	access	data	associated	with	a
particular	object	instance.	As	such,	these	methods	are	created	for	the	object	type	itself	and
describe	actions	that	are	global	to	that	object	type.	Because	static	methods	do	not	have
access	to	the	data	associated	with	a	particular	object	type	instance,	they	may	not	reference
the	default	parameter	SELF.

Consider	the	following	example	of	a	static	method	that	displays	ZIP	code	information.
Note	that	this	example	shows	only	the	newly	added	static	method.

For	Example		ch23_8c.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	zipcode_obj_type	AS	OBJECT

		…

		,STATIC	PROCEDURE	display_zipcode_info	(in_zip_obj	IN

zipcode_obj_type));

/

CREATE	OR	REPLACE	TYPE	BODY	zipcode_obj_type	AS

		…

		STATIC	PROCEDURE	display_zipcode_info	(in_zip_obj	IN	zipcode_obj_type)

		IS

		BEGIN

				DBMS_OUTPUT.PUT_LINE	(‘Zip:	‘		||in_zip_obj.zip);

				DBMS_OUTPUT.PUT_LINE	(‘City:	‘	||in_zip_obj.city);

				DBMS_OUTPUT.PUT_LINE	(‘State:	‘||in_zip_obj.state);

		END;

END;

/

In	this	version	of	the	script,	the	static	method	display_zipcode_info	displays	the
values	of	the	individual	attributes	for	the	ZIP	code	object	on	the	screen.	Even	though	this
method	references	data	associated	with	some	object	instance,	the	object	instance	is	created
elsewhere	(i.e.,	another	PL/SQL	script,	function,	or	procedure)	and	then	passed	into	this
method	as	an	input	parameter.

Comparing	Objects
In	PL/SQL,	element	data	types	such	VARCHAR2,	NUMBER,	or	DATE	have	a	predefined
order	that	enables	them	to	be	compared	to	each	other	or	sorted.	For	example,	the
comparison	operator	(>)	determines	which	variable	contains	a	greater	value	and	the	IF-
THEN-ELSE	statement	evaluates	to	TRUE,	FALSE,	or	NULL	accordingly:

IF	v_num1	>	v_num2	THEN

		—	Do	something

ELSE

		—	Do	something	else

END	IF;

In	contrast,	an	object	type	may	contain	multiple	attributes	of	different	data	types	and,	as
a	result,	does	not	have	a	predefined	order.	Thus,	to	be	able	to	compare	and	sort	object
instances	of	the	same	object	type,	you	must	specify	how	these	object	instances	should	be
compared	and	ordered.	This	can	be	accomplished	via	two	types	of	optional	member
methods,	map	and	order.

Map	Methods

Map	methods	compare	and	order	object	instances	essentially	by	mapping	an	object
instance	to	an	element	(scalar)	data	type	such	as	DATE,	NUMBER,	or	VARCHAR2.	This
mapping	is	then	used	to	position	object	instance	on	the	axis	(DATE,	NUMBER,	or
VARCHAR2)	used	for	the	comparison.

A	map	method	is	a	member	function	that	does	not	accept	any	parameters	and	returns	an
element	data	type,	as	demonstrated	in	the	next	example.	Note	that	this	example	shows
only	the	newly	added	map	method.

For	Example		ch23_8d.sql

Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	zipcode_obj_type	AS	OBJECT

		…

		,MAP	MEMBER	FUNCTION	zipcode	RETURN	VARCHAR2);

/

CREATE	OR	REPLACE	TYPE	BODY	zipcode_obj_type	AS

		…

		MAP	MEMBER	FUNCTION	zipcode	RETURN	VARCHAR2

		IS

		BEGIN

				RETURN	(zip);

		END;

END;

/

In	this	version	of	the	script,	the	map	member	function	returns	the	value	of	the	zip
attribute	that	has	been	defined	as	VARCHAR2.

Once	a	map	method	is	added	to	the	object	type,	object	type	instances	may	be	compared
or	ordered	similarly	to	the	element	data	types.	For	example,	if	zip_obj1	and
zip_obj2	are	two	instances	of	the	zipcode_obj_type,	they	can	be	compared	as
follows:

zip_obj1	>	zip_obj2

or
Click	here	to	view	code	image

zip_obj1.zipcode()	>	zip_obj2.zipcode()

The	second	statement	uses	dot	notation	to	reference	the	map	function.

The	next	example	demonstrates	how	the	various	object	type	methods	created	so	far	may
be	used.

For	Example		ch23_9a.sql
Click	here	to	view	code	image

DECLARE

		zip_obj1	zipcode_obj_type;

		zip_obj2	zipcode_obj_type;

BEGIN

		—	Initialize	object	instances	with	user-defined	constructor	methods

		zip_obj1	:=	zipcode_obj_type	(zip			=>	‘12345’

																															,city		=>	‘Some	City’

																															,state	=>	‘AB’);

		zip_obj2	:=	zipcode_obj_type	(zip	=>	‘48104’);

		—	Compare	object	instances	via	map	methods

		IF	zip_obj1	>	zip_obj2

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj1	is	greater	than	zip_obj2’);

		ELSE

				DBMS_OUTPUT.PUT_LINE

						(‘zip_obj1	is	not	greater	than	zip_obj2’);

		END	IF;

END;

When	the	user-defined	constructors	are	invoked,	there	is	no	reference	to	the	SELF	default
parameter	in	the	call	statements.

When	run,	this	script	produces	the	following	output:
Click	here	to	view	code	image

v_zip_obj1	is	not	greater	than	v_zip_obj2

Order	Methods

Order	methods	use	a	different	technique	for	comparing	and	ordering	object	instances.
They	do	not	map	object	instances	to	an	external	axis	such	as	NUMBER	or	DATE.	Instead,
an	order	method	compares	the	current	object	instance	with	another	object	instance	of	the
same	object	type	based	on	some	criteria	specified	in	the	method.

An	order	method	is	a	member	function	with	a	single	IN	parameter	of	the	same	object
type	that	returns	INTEGER	as	its	return	type.	Furthermore,	the	method	must	return	a
negative	number,	zero,	or	a	positive	number,	which	indicates	that	the	object	instance
referenced	by	the	SELF	parameter	is	less	than,	equal	to,	or	greater	than	the	object	instance
referenced	by	the	IN	parameter,	respectively.

Watch	Out!

The	following	restrictions	apply	to	the	map	and	order	methods:

	An	object	type	may	contain	either	an	order	method	or	a	map	method.	If	it	has
both,	the	following	error	is	raised	at	the	time	of	its	creation:

Click	here	to	view	code	image
PLS-00154:	An	object	type	may	have	only	1	MAP	or	1	ORDER	method.

	An	object	type	derived	from	another	object	type	may	not	define	an	order
method.

Consider	the	following	example	of	an	order	method	for	the	zipcode_obj_type.
Similarly	to	the	previous	examples,	this	version	shows	only	the	newly	added	order
method.

For	Example		ch23_8e.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	TYPE	zipcode_obj_type	AS	OBJECT

		…

		,ORDER	MEMBER	FUNCTION	zipcode	(zip_obj	zipcode_obj_type)	RETURN

INTEGER);

/

CREATE	OR	REPLACE	TYPE	BODY	zipcode_obj_type	AS

		…

		ORDER	MEMBER	FUNCTION	zipcode	(zip_obj	zipcode_obj_type)	RETURN	INTEGER

		IS

		BEGIN

				IF				zip	<	zip_obj.zip	THEN	RETURN	-1;

				ELSIF	zip	=	zip_obj.zip	THEN	RETURN		0;

				ELSIF	zip	>	zip_obj.zip	THEN	RETURN		1;

				END	IF;

		END;

END;

/

In	this	version	of	the	script,	the	map	member	function	is	replaced	by	the	order	member
function.	Much	like	the	map	method,	the	order	method	uses	the	zip	attribute	as	the	basis
of	comparison	for	the	two	object	type	instances.

The	following	example	demonstrates	how	an	order	method	may	be	used.

For	Example		ch23_10a.sql
Click	here	to	view	code	image

DECLARE

		zip_obj1	zipcode_obj_type;

		zip_obj2	zipcode_obj_type;

		v_result		INTEGER;

BEGIN

		—	Initialize	object	instances	with	user-defined	constructor	methods

		zip_obj1	:=	zipcode_obj_type	(‘12345’,	‘Some	City’,	‘AB’);

		zip_obj2	:=	zipcode_obj_type	(‘48104’);

		—	Compare	objects	instances	via	ORDER	method

		v_result	:=	zip_obj1.zipcode(zip_obj2);

		DBMS_OUTPUT.PUT_LINE	(‘The	result	of	comparison	is	‘||v_result);

		IF	v_result	=	1

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj1	is	greater	than	zip_obj2’);

		ELSIF	v_result	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj1	is	equal	to	zip_obj2’);

		ELSIF	v_result	=	-1

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj1	is	less	than	zip_obj2’);

		END	IF;

END;

In	this	script,	the	result	of	the	order	method	is	assigned	to	the	v_result	variable,
which	is	defined	as	an	INTEGER.	Note	how	the	order	method	is	invoked:
Click	here	to	view	code	image

v_result	:=	zip_obj1.zipcode(zip_obj2);

The	order	method	associated	with	the	instance	zip_obj1	accepts	the	instance
zip_obj2	as	its	input	parameter.

When	run,	this	script	produces	the	following	output:
Click	here	to	view	code	image

The	result	of	comparison	is	-1

zip_obj1	is	less	than	zip_obj2

It	is	important	to	recognize	which	object	instance	is	being	used	to	invoke	the	order
method,	as	different	instances	may	yield	different	results.	For	example,	consider	what
happens	if	we	transpose	the	object	instances	when	calling	the	order	method	(the	affected
statements	are	shown	in	bold):

For	Example		ch23_10b.sql
Click	here	to	view	code	image

DECLARE

		zip_obj1	zipcode_obj_type;

		zip_obj2	zipcode_obj_type;

		v_result		INTEGER;

BEGIN

		—	Initialize	object	instances	with	user-defined	constructor	methods

		zip_obj1	:=	zipcode_obj_type	(‘12345’,	‘Some	City’,	‘AB’);

		zip_obj2	:=	zipcode_obj_type	(‘48104’);

		—	Compare	objects	instances	via	ORDER	method

		v_result	:=	zip_obj2.zipcode(zip_obj1);

		DBMS_OUTPUT.PUT_LINE	(‘The	result	of	comparison	is	‘||v_result);

		IF	v_result	=	1

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj2	is	greater	than	zip_obj1’);

		ELSIF	v_result	=	0

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj2	is	equal	to	zip_obj1’);

		ELSIF	v_result	=	-1

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘zip_obj2	is	less	than	zip_obj1’);

		END	IF;

END;

The	text	displayed	by	the	DBMS_OUTPUT.PUT_LINE	statements	has	been	altered	in	this
script	to	produce	the	correct	output.	While	this	is	a	very	simple	example,	it	is	able	to
demonstrate	that	changing	how	the	order	method	is	invoked	(via	a	change	in	the	object
instance)	affects	how	its	return	value	is	evaluated.

This	version	of	the	script	produces	different	output	as	shown:
Click	here	to	view	code	image

The	result	of	comparison	is	1

zip_obj2	is	greater	than	zip_obj1

Summary
In	this	chapter,	you	learned	how	to	define	and	use	objects	in	Oracle.	Overall,	object	types
in	Oracle	are	similar	to	classes	created	in	Java.	They	consist	of	attributes	and	methods,
where	attributes	represent	different	data	elements	of	an	object	and	methods	are	used	to
perform	various	actions	on	these	data	elements.	You	also	learned	how	to	implement	and
use	different	types	of	methods	to	initialize,	compare	and	sort	objects.	In	addition,	you
discovered	how	to	use	objects	with	collections.

By	the	Way

The	companion	website	provides	additional	exercises	and	suggested	answers
for	this	chapter,	with	discussion	related	to	how	those	answers	resulted.	The
main	purpose	of	these	exercises	is	to	help	you	test	the	depth	of	your
understanding	by	utilizing	all	of	the	skills	that	you	have	acquired	throughout
this	chapter.

24.	Oracle-Supplied	Packages

In	this	chapter,	you	will	learn	about

	Extending	Functionality	with	Oracle-Supplied	Packages

	Error	Reporting	with	Oracle-Supplied	Packages

Oracle	has	built	into	its	database	hundreds	of	packages	that	extend	what	you	can	achieve
with	PL/SQL.	Each	new	version	of	the	database	comes	with	new	supplied	packages.	With
version	12c,	Oracle	introduced	18	brand-new	packages	and	added	new	procedures	in
many	existing	packages.	These	packages	offer	functionality	that	you	would	not	be	able	to
achieve	with	PL/SQL	alone.	The	reason	is	that	the	Oracle-supplied	packages	make	use	of
the	C	programming	language,	which	is	not	something	that	you	can	do	with	ordinary
PL/SQL	packages.	As	a	consequence,	Oracle-supplied	packages	have	full	access	to	the
operating	system	and	other	aspects	of	the	Oracle	server	that	are	not	available	to	ordinary
PL/SQL	packages.	You	are	already	familiar	with	the	DBMS_OUTPUT	package’s	procedure
PUT_LINE,	which	is	used	to	gather	debugging	information	in	the	buffer	for	output.	This
chapter	serves	as	an	introduction	to	a	few	key	Oracle-supplied	packages;	you	will	learn
about	their	basic	features	and	discover	how	to	make	use	of	them.

Lab	24.1:	Extending	Functionality	with	Oracle-Supplied
Packages

After	this	lab,	you	will	be	able	to

	Access	Files	within	PL/SQL	with	UTL_FILE

	Schedule	Jobs	with	DBMS_JOB

	Generate	an	Explain	Plan	with	DBMS_XPLAN

	Generate	Implicit	Statement	Results	with	DBMS_SQL

Accessing	Files	within	PL/SQL	with	UTL_FILE
The	UTL_FILE	package	provides	text	file	input	and	output	capabilities	within	PL/SQL.
Oracle	introduced	this	package	with	database	version	7.3.	It	enables	you	to	read	input
from	the	operating	system	files	and	write	to	operating	system	files.	This	capability	could
prove	useful	if	you	want	to	load	data	from	another	system	into	the	database.	For	instance,
if	you	want	to	store	logs	from	a	web	server	in	your	data	warehouse,	the	UTL_FILE
package	would	enable	you	to	read	the	text	file	logs	and	then	parse	them	so	as	to	load	the
data	in	the	correct	tables	and	columns	in	the	data	warehouse.	This	package	also	allows	you
to	write	data	out	to	a	file.	This	capability	is	useful	if	you	want	to	produce	logs	or	capture
current	information	about	the	database	and	store	it	in	a	text	file,	or	extract	data	into	a	text
file	that	another	application	can	process.

The	UTL_FILE	package	provides	server-side	text	file	access,	so	it	cannot	read	binary
files.	For	that	purpose,	you	would	use	the	DBMS_LOB	package.	The	files	that	you	access
must	be	mapped	to	a	drive	on	the	server.	The	security	settings	that	determine	which
directories	you	can	access	are	controlled	in	the	INIT.ORA	file;	you	set	the	drives	that	can
be	accessed	with	the	UTL_FILE_DIR	initialization	parameter.

UTL_FILE_DIR	=	‘C:\WORKING'

You	can	also	bypass	all	server-side	security	and	allow	all	files	to	be	accessed	with	the
UTL_FILE	package	with	the	following	setting:

UTL_FILE_DIR	=	*

If	you	do	not	have	access	to	the	INIT.ORA	file	on	the	database	server,	you	can	query
the	data	dictionary	to	find	the	value	that	has	been	set	in	your	database	with	the	following
SQL	code:

SELECT	name,	value

FROM		V$SYSTEM_PARAMETER

WHERE		name	=	‘utl_file_dir’

By	the	Way

It	is	not	advisable	to	allow	UTL_FILE	access	to	all	files	in	a	production
environment.	This	setting	means	that	all	files,	including	important	files	that
manage	the	operation	of	the	database,	are	accessible.	Developers	may
potentially	write	a	procedure	that	corrupts	the	database	in	such	a	case.

To	use	the	UTL_FILE	file	package,	you	open	the	text	file,	process	the	file	by	writing	to
it	and	getting	lines	from	the	file,	and	close	the	file.	If	you	do	not	close	the	file,	the
operating	system	will	think	that	the	file	is	in	use	and	will	not	allow	you	to	write	to	the	file
until	it	is	closed.	Table	24.1	lists	the	major	functions,	procedures,	and	data	types	in	the
UTL_FILE	package.	Table	24.2	identifies	the	exceptions	found	in	this	package.

Table	24.1	UTL_FILE	Functions,	Procedures,	and	Data	Types

Table	24.2	UTL_FILE	Exceptions

The	following	example	demonstrates	a	procedure	that	writes	to	a	log	file	the	date,	time,
and	number	of	users	who	are	currently	logged	on.	To	make	use	of	this	example,	the	user
STUDENT	needs	to	have	privileges	to	access	the	v$session	table.	Access	can	be
granted	by	the	database	administrator	(DBA)	to	STUDENT	as	follows:
Click	here	to	view	code	image

GRANT	SELECT	ON	sys.v_$session	TO	student;

ch24_1.sql”

For	Example		ch24_1.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	BODY	school_api	AS

CREATE	OR	REPLACE	PROCEDURE	LOG_USER_COUNT

		(PI_DIRECTORY		IN	VARCHAR2,

			PI_FILE_NAME		IN	VARCHAR2)

AS

		V_File_handle		UTL_FILE.FILE_TYPE;

		V_user_count			number;

BEGIN

		SELECT	count(*)

		INTO			V_user_count

		FROM			v$session

		WHERE		username	is	not	null;

		V_File_handle		:=

				UTL_FILE.FOPEN(PI_DIRECTORY,	PI_FILE_NAME,	‘A’);

		UTL_FILE.NEW_LINE(V_File_handle);

		UTL_FILE.PUT_LINE(V_File_handle		,	‘–-	User	log	–—’);

		UTL_FILE.NEW_LINE(V_File_handle);

		UTL_FILE.PUT_LINE(V_File_handle		,	‘on	‘||

					TO_CHAR(SYSDATE,	‘MM/DD/YY	HH24:MI’));

		UTL_FILE.PUT_LINE(V_File_handle		,

					‘Number	of	users	logged	on:	‘||	V_user_count);

		UTL_FILE.PUT_LINE(V_File_handle		,	‘–-	End	log	–—’);

		UTL_FILE.NEW_LINE(V_File_handle);

		UTL_FILE.FCLOSE(V_File_handle);

EXCEPTION

		WHEN	UTL_FILE.INVALID_FILENAME	THEN

				DBMS_OUTPUT.PUT_LINE(‘File	is	invalid’);

		WHEN	UTL_FILE.WRITE_ERROR	THEN

				-DBMS_OUTPUT.PUT_LINE(‘Oracle	is	not	able	to	write	to	file’);

END;

The	LOG_USER_COUNT	procedure	can	be	executed	to	log	the	number	of	users	into	the
file	c:\working\user.log.
Click	here	to	view	code	image

SQL>	exec	LOG_USER_COUNT(‘C:\working',	‘USER.LOG’);

PL/SQL	procedure	successfully	completed.

Here	are	the	resulting	USER.LOG	contents:
–-	User	log	–—

on	07/05/03	13:09

Number	of	users	logged	on:	1

–-	End	log	–—

Access	Files	with	UTL_FILE

The	following	PL/SQL	script	creates	a	procedure	to	read	a	file	and	display	the	contents.
The	exception	WHEN	NO_DATA_FOUND	will	be	raised	when	the	last	line	of	the	file	has
been	read	and	there	are	no	more	lines	to	read.

For	Example		ch24_2.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	READ_FILE

		(PI_DIRECTORY		IN	VARCHAR2,

			PI_FILE_NAME		IN	VARCHAR2)

AS

		V_File_handle		UTL_FILE.FILE_TYPE;

		V_FILE_Line				VARCHAR2(1024);

BEGIN

		V_File_handle		:=

				UTL_FILE.FOPEN(PI_DIRECTORY,	PI_FILE_NAME,	‘R’);

			LOOP

							UTL_FILE.GET_LINE(V_File_handle	,	v_file_line);

							DBMS_OUTPUT.PUT_LINE(v_file_line);

			END	LOOP;

EXCEPTION

			WHEN	NO_DATA_FOUND

							THEN	UTL_FILE.FCLOSE(V_File_handle);

END;

Scheduling	Jobs	with	DBMS_JOB
The	Oracle-supplied	package	DBMS_JOB	allows	you	to	schedule	the	execution	of	a
PL/SQL	procedure.	It	was	first	introduced	in	PL/SQL	version	2.2.	DBMS_JOB	is	an
Oracle	PL/SQL	package	provided	to	users.	A	job	is	submitted	to	a	job	queue	and	runs	at
the	specified	time.	The	user	can	also	input	a	parameter	that	specifies	how	often	the	job
should	run.	A	job	can	consist	of	any	PL/SQL	code.	The	DBMS_JOB	package	has
procedures	for	submitting	jobs	for	scheduled	execution,	executing	a	job	that	has	been
submitted	outside	of	its	schedule,	changing	the	execution	parameters	of	a	previously
submitted	job,	suspending	a	job,	and	removing	jobs	from	the	schedule	(Table	24.3).	The
primary	reasons	you	might	want	to	use	this	feature	would	be	to	run	a	batch	program
during	off	hours	when	there	are	fewer	users	logged	into	the	system	or	to	maintain	a	log.

Table	24.3	The	Main	Procedures	in	the	DBMS_JOB	Package

The	job	queue	is	governed	by	the	SNP	(Snapshot	Process)	process	that	runs	in	the
background.	This	process	is	used	to	implement	data	snapshots	as	well	as	job	queues.	If	it
fails,	the	database	will	attempt	to	restart	the	process.	The	database	initialization	parameter

JOB_QUEUE_PROCESSES	(set	in	the	INIT.ORA	file	and	viewable	in	the	DBA	view
V$SYSTEM_PARAMETER)	determines	how	many	processes	can	start.	It	must	be	set	to	a
number	greater	than	0	(the	default	is	0).

Watch	Out!

SNP	background	processes	will	not	execute	jobs	if	the	system	has	been
started	in	restricted	mode.	It	is	expected	behavior	for	jobs	not	to	be	executed
while	the	database	is	in	restricted	mode.	However,	you	can	use	the	ALTER
SYSTEM	command	to	turn	this	behavior	on	and	off	as	follows:
Click	here	to	view	code	image

ALTER	SYSTEM	ENABLE	RESTRICTED	SESSION;

ALTER	SYSTEM	DISABLE	RESTRICTED	SESSION;

Submitting	Jobs

An	important	first	step	when	submitting	jobs	to	the	queue	is	to	ensure	that	your	PL/SQL
procedure	is	valid	and	executes	the	way	you	expect	it	to	run.	Prior	to	submitting	a	PL/SQL
procedure,	thoroughly	test	the	procedure’s	functionality.	Job	submission	assumes	your	job
is	valid.	The	SUBMIT	procedure	will	take	four	IN	parameters	and	return	one	OUT
parameter	(Table	24.4).	The	OUT	parameter	is	the	job	number	of	the	job	you	have
submitted.	This	job	number	is	also	visible	in	the	DBA_JOBS	view.

Table	24.4	Parameters	for	the	DBMS_JOB.SUBMIT	Procedure

The	following	example	will	submit	the	LOG_USER_COUNT	procedure	(created	with
ch24_3.sql)	and	set	it	to	run	every	6	hours.

For	Example		ch24_3.sql
Click	here	to	view	code	image

DECLARE

		V_JOB_NO	NUMBER;

BEGIN

		DBMS_JOB.SUBMIT(JOB					=>	v_job_no,

																			WHAT				-=>	‘LOG_USER_COUNT

																										(”C:\WORKING'’,	”USER.LOG”);’,

																			NEXT_DATE	=>	SYSDATE,

																			INTERVAL		=>	‘SYSDATE	+	1/4	‘);

		Commit;

		DBMS_OUTPUT.PUT_LINE(v_job_no);

	END;

To	see	this	job	in	the	queue,	query	the	DBA_JOB	view.	For	the	STUDENT	user	to	be
able	to	perform	this	query,	the	DBA	needs	to	perform	the	following	grant:
Click	here	to	view	code	image

GRANT	SELECT	on	DBA_JOBS	to	STUDENT;

Running	the	SELECT	statement
Click	here	to	view	code	image

SELECT	JOB,	NEXT_DATE,	NEXT_SEC,	BROKEN,	WHAT

FROM			DBA_JOBS;

then	produces	the	following	result:
Click	here	to	view	code	image

JOB	NEXT_DATE	NEXT_SEC	B	WHAT

–-	–––	––—	-	––––––––––––––—

			1	05-JUL-03	16:56:30	N	LOG_USER_COUNT(‘D:\WORKING’,	‘USER.LOG’);

To	force	job	number	1	to	run	or	to	change,	use	the	RUN	or	CHANGE	procedure.	To
remove	job	number	1	from	the	job	queue,	use	the	REMOVE	procedure.
Click	here	to	view	code	image

—	execute	job	number	1

exec	dbms_job.run(1);

—	remove	job	number	1	from	the	job	queue

exec	dbms_job.remove(1);

—	change	job	number	1	to	run	immediately	and	then	every	hour	of

—	the	day

exec	DBMS_JOB.CHANGE(1,	null,	SYSDATE,	‘SYSDATE	+	1/24	‘);

Once	the	job	has	failed,	it	will	be	marked	as	broken	in	the	job	queue.	Broken	jobs	do
not	run.	You	can	also	force	a	job	to	be	flagged	as	broken.	You	may	want	to	do	this	if	you
have	entered	all	the	parameters	correctly	yet	do	not	want	the	job	to	run	on	its	normal	cycle
while	you	are	in	the	middle	of	altering	one	of	its	dependencies.	You	can	then	run	the	job
again	by	forcing	the	broken	flag	off.
Click	here	to	view	code	image

—	set	job	1	to	be	broken

exec	dbms_job.BROKEN(1,	TRUE);

—	set	job	1	not	to	be	broken

exec	dbms_job.BROKEN(1,	FALSE);

When	jobs	are	running,	you	will	see	their	activity	in	the	view	DBA_JOBS_RUNNING.
Once	the	run	has	completed,	it	will	no	longer	be	visible	in	this	view.

In	the	following	example,	the	procedure	DELETE_ENROLL	will	delete	a	student’s
enrollment	if	there	are	no	grades	in	the	GRADE	table	for	that	student	and	the	start	date	of
the	section	is	already	one	month	past	the	current	system	date.

For	Example		ch24_4.sql

Click	here	to	view	code	image

CREATE	or	REPLACE	procedure	DELETE_ENROLL

AS

		CURSOR	C_NO_GRADES	is

SELECT		st.student_id,	se.section_id

		FROM		student	st,

								enrollment	e,

								section	se

	WHERE		st.student_id	=	e.student_id

	AND				e.section_id		=	se.section_id

	AND				se.start_date_time	<	ADD_MONTHS(SYSDATE,	-1)

	AND		NOT	EXISTS	(SELECT	g.student_id,	g.section_id

																			FROM		grade	g

																		WHERE		g.student_id	=	st.student_id

																				AND		g.section_id	=	se.section_id);

BEGIN

		FOR	R	in	C_NO_GRADES	LOOP

				DELETE		enrollment

				WHERE			section_id	=	r.section_id

				AND					student_id	=	r.student_id;

		END	LOOP;

		COMMIT;

EXCEPTION

		WHEN	OTHERS	THEN

				DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

The	following	script	shows	how	to	submit	the	procedure	DELETE_ENROLL	to	the	job
queue	so	that	it	will	execute	once	a	month:
Click	here	to	view	code	image

SQL>	VARIABLE	V_JOB	NUMBER

SQL>		EXEC	DBMS_JOB.SUBMIT(:v_job,	‘DELETE_ENROLL;’,SYSDATE,

‘ADD_MONTHS(SYSDATE,	1)’);

PL/SQL	procedure	successfully	completed

SQL>	commit;

Commit	complete.

SQL>	print	v_job

					V_JOB

–––-

									2

Generating	an	Explain	Plan	with	DBMS_XPLAN
The	DBMS_XPLAN	package	became	available	in	Oracle	version	9.2.	This	package	helps	to
display	the	execution	plan	of	an	SQL	statement	as	the	output	of	the	explain	plan
command.	It	provides	the	output	in	an	easier-to-understand	format	than	was	possible	in
prior	versions	of	Oracle.	The	SQL	execution	plan	and	runtime	statistics	that	are	stored	in
V$SQL_PLAN,	V$SQL,	and	PLAN_STATISTICS	are	displayed	with	the	DBMS_XPLAN
package.	The	SQL	command	for	creating	an	explain	plan	takes	this	information	and	uses	it
to	populate	the	PLAN_TABLE.	You	must	know	a	great	deal	about	query	optimization	to
make	the	most	effective	use	of	an	explain	plan.

By	the	Way

For	details	on	SQL	optimization	and	use	of	the	results	in	an	explain	plan,	see
Oracle	SQL	by	Example	by	Alice	Rischert	(ISBN-10:	0137142838;	ISBN-13:
978-0137142835).

The	DBMS_XPLAN	package	depends	on	PLAN_TABLE—a	table	that	holds	the	results
from	running	an	explain	plan	on	a	SELECT	statement.	The	following	DDL	is	used	to
create	the	PLAN_TABLE:
Click	here	to	view	code	image

create	table	PLAN_TABLE	(

						statement_id										varchar2(30),

						plan_id															number,

						timestamp													date,

						remarks															varchar2(4000),

						operation													varchar2(30),

						options															varchar2(255),

						object_node											varchar2(128),

						object_owner										varchar2(30),

						object_name											varchar2(30),

						object_alias										varchar2(65),

						object_instance							numeric,

						object_type											varchar2(30),

						optimizer													varchar2(255),

						search_columns								number,

						id																				numeric,

						parent_id													numeric,

						depth																	numeric,

						position														numeric,

						cost																		numeric,

						cardinality											numeric,

						bytes																	numeric,

						other_tag													varchar2(255),

						partition_start							varchar2(255),

						partition_stop								varchar2(255),

						partition_id										numeric,

						other																	long,

						distribution										varchar2(30),

						cpu_cost														numeric,

						io_cost															numeric,

						temp_space												numeric,

						access_predicates					varchar2(4000),

						filter_predicates					varchar2(4000),

						projection												varchar2(4000),

						time																		numeric,

						qblock_name											varchar2(30),

						other_xml													clob

);

By	the	Way

The	RDBMS/ADMIN/	subdirectory	under	your	Oracle	home	directory	will
always	contain	the	most	up-to-date	DDL	script	to	create	a	PLAN_TABLE.
You	can	connect	as	the	SYSDBA	to	create	this	table	and	make	it	available	to
all	users.	The	following	statements	will	create	the	PLAN_TABLE	under	the
SYS	schema,	create	a	public	schema,	and	allow	all	users	to	make	use	of	the
PLAN_TABLE:
Click	here	to	view	code	image

SQL>	CONN	sys/password	AS	SYSDBA

Connected

SQL>	@$ORACLE_HOME/rdbms/admin/utlxplan.sql

SQL>	GRANT	ALL	ON	sys.plan_table	TO	public;

SQL>	CREATE	PUBLIC	SYNONYM	plan_table	FOR	sys.plan_table;

By	default,	if	several	plans	in	the	plan	table	match	the	statement_id	parameter	that
is	passed	to	the	display	table	function	(the	default	value	is	NULL),	only	the	plan
corresponding	to	the	last	EXPLAIN	PLAN	command	is	displayed.	Hence,	there	is	no	need
to	purge	the	plan	table	after	each	EXPLAIN	PLAN	is	created.	However,	you	should	purge
the	plan	table	regularly	(for	example,	by	using	the	TRUNCATE	TABLE	command)	to
ensure	good	performance	in	the	execution	of	the	DISPLAY	table	function.

In	prior	versions	of	Oracle,	a	number	of	options	were	available.	For	example,	you	could
use	the	SQL*Plus	command	SET	AUTOTRACE	TRACE	EXPLAIN	to	generate	an
immediate	explain	plan.
Click	here	to	view	code	image

SQL>	SET	AUTOTRACE	TRACE	EXPLAIN

		1		SELECT	s.course_no,

		2													c.description,

		3													i.first_name,

		4													i.last_name,

		5													s.section_no,

		6													TO_CHAR(-s.start_date_time,‘Mon-DD-YYYY	HH:MIAM’),

		7													s.location

		8			FROM	section	s,

		9								course	c,

	10								instructor	i

	11			WHERE	s.course_no				=	c.course_no

	12*		AND			s.instructor_id=	i.instructor_id

Execution	Plan

––––––––––––––––––––-

		0				SELECT	STATEMENT	Optimizer=CHOOSE	(Cost=9	Card=78	Bytes=4368)

		1			0		HASH	JOIN	(Cost=9	Card=78	Bytes=4368)

		2			1				HASH	JOIN	(Cost=6	Card=78	Bytes=2574)

		3			2					TABLE	ACCESS	(FULL)	OF	‘INSTRUCTOR’	(Cost=3	Card=10	Bytes=140)

		4			2					TABLE	ACCESS	(FULL)	OF	‘SECTION’	(Cost=3	Card=78	Bytes=1482)

		5			1				TABLE	ACCESS	(FULL)	OF	‘COURSE’	(Cost=3	Card=30	Bytes=690)

You	can	also	generate	an	explain	plan	that	will	be	stored	in	the	PLAN_TABLE	and	then
query	the	results	of	an	explain	plan.

Click	here	to	view	code	image

SQL>	explain	plan	for

		2		SELECT	s.course_no,

		3													c.description,

		4													i.first_name,

		5													i.last_name,

		6													s.section_no,

		7													TO_CHAR(s.start_date_time,‘Mon-DD-YYYY	HH:MIAM’),

		8													s.location

		9				FROM	section	s,

	10									course	c,

	11									instructor	i

	12				WHERE	s.course_no				=	c.course_no

	13				AND			s.instructor_id=	i.instructor_id;

Explained.

select	rtrim	(lpad		(‘	‘,	2*level)		||

																rtrim	(operation)					||	‘	‘	||

																rtrim	(options)							||	‘	‘	||

																object_name													||	‘	‘	||

																partition_start									||	‘	‘	||

																partition_stop										||	‘	‘	||

																to_char	(partition_id)

)	the_query_plan

		from	plan_table

		connect	by	prior	id	=	parent_id

		start	with	id	=	0;

THE_QUERY_PLAN

–––––––––––––—

		SELECT	STATEMENT

			HASH	JOIN

				HASH	JOIN

					TABLE	ACCESS	BY	INDEX	ROWID	SECTION

						INDEX	FULL	SCAN	SECT_INST_FK_I

					SORT	JOIN

						TABLE	ACCESS	FULL	INSTRUCTOR

				TABLE	ACCESS	FULL	COURSE

To	make	use	of	the	DBMS_XPLAN	procedure,	use	the	SELECT	*	FROM
TABLE(DBMS_XPLAN.DISPLAY)	command	to	generate	the	explain	plan.
Click	here	to	view	code	image

SQL>	explain	plan	for

		2		SELECT	s.course_no,

		3													c.description,

		4													i.first_name,

		5													i.last_name,

		6													s.section_no,

		7													TO_CHAR(s.start_date_time,‘Mon-DD-YYYY	HH:MIAM’),

		8													s.location

		9				FROM		section	s,

	10										course	c,

	11										instructor	i

	12				WHERE	s.course_no				=	c.course_no

	13				AND			s.instructor_id=	i.instructor_id;

Explained.

SQL>	SELECT	*	FROM	TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT

–––––––––––––––––––––––––––

–––––––––––––––––––––––––––

|	Id		|	Operation										|	Name								|	Rows		|	Bytes	|	Cost	(%CPU)|

Time				|

–––––––––––––––––––––––––––

|			0	|	SELECT	STATEMENT			|													|			78		|		4368	|			9			(34)|

*00:00:01|

|*		1	|		HASH	JOIN									|													|			78		|		4368	|			9			(34)|

00:00:01	|

|*		2	|		HASH	JOIN									|													|			78		|		2574	|			6			(34)|

00:00:01	|

|			3	|			TABLE	ACCESS	FULL|		INSTRUCTOR	|			10		|			140	|			3			(34)|

00:00:01	|

|			4	|			TABLE	ACCESS	FULL|		SECTION				|			78		|		1482	|			3			(34)|

00:00:01	|

|			5	|		TABLE	ACCESS	FULL	|		COURSE					|			30		|			690	|			3			(34)|

00:00:01	|

–––––––––––––––––––––––––––

Predicate	Information	(identified	by	operation	id):

–––––––––––––––––

		1	-	access(“S”.“COURSE_NO”=“C”.“COURSE_NO”)

		2	-	access(“S”.“INSTRUCTOR_ID”=“I”.“INSTRUCTOR_ID”)

17	rows	selected.

Generating	Implicit	Statement	Results	with	DBMS_SQL
In	older	versions	of	Oracle,	there	were	a	few	operations	available	in	other	database
products	such	as	Microsoft	SQL	Server	that	could	not	be	done	as	elegantly	in	the	Oracle
platform.	This	created	a	challenge	for	companies	that	were	migrating	their	applications	to
Oracle	because	they	would	have	to	make	a	great	many	changes	to	their	stored	procedures
—even	rewrite	them—for	use	on	the	Oracle	platform.	Consider	the	ability	to	pass	the
results	of	a	SQL	statement	out	of	a	stored	procedure.	This	can	be	done	rather	easily	with
the	Transact	SQL	(T-SQL)	procedural	language	of	SQL	Server,	but	in	the	Oracle	platform
it	had	to	be	done	with	a	REF	CURSOR	parameter.	This	is	because	T-SQL	syntax	permits
implicit	returns	of	a	SQL	result	set	from	queries.	A	similar	kind	of	functionality	is	now
allowed	in	Oracle	12c	through	use	of	the	DBMS_SQL	package	and	the	RETURN_RESULT
procedure	in	that	system	package.

Using	DBMS_SQL	to	Return	a	Result	Set

The	Oracle-supplied	package	DBMS_SQL	includes	an	entity	called	a	SQL	cursor	number.
This	PL/SQL	integer	can	be	passed	as	an	IN	or	OUT	parameter.	You	should	use	the
DBMS_SQL	package	to	run	dynamic	SQL	when	you	don’t	know	the	details	of	the
SELECT	statement	until	it	is	run	or	you	don’t	know	which	columns	will	be	called	in	the
SELECT	statement	until	it	is	run.

In	the	following	example,	DBMS_SQL.RETURN_RESULT	is	used	to	return	a	result	set
without	any	OUT	parameter.

For	Example		ch24.6.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PACKAGE	Student_Instructor	AS

PROCEDURE	show_population

						(i_zip	IN	zipcode.zip%TYPE);

END	Student_Instructor;

/

CREATE	or	REPLACE	PACKAGE	BODY	Student_Instructor

AS

PROCEDURE	show_population

					(i_zip	IN	zipcode.zip%TYPE)

AS

		student_list				SYS_REFCURSOR;

		instructor_list	SYS_REFCURSOR;

BEGIN

		OPEN	student_list	FOR

								SELECT	‘Student’	type,	First_Name,	Last_Name

										FROM		student

									WHERE		zip	=	i_zip;

						DBMS_SQL.RETURN_RESULT(student_list);

		OPEN	instructor_list	FOR

										SELECT	‘Instructor’	type,	First_Name,	Last_Name

												FROM		instructor

											WHERE		zip	=	i_zip;

						DBMS_SQL.RETURN_RESULT(instructor_list);

END	show_population;

END	Student_Instructor;

/

This	script	can	be	executed	for	the	ZIP	code	10025	as	follows:
Click	here	to	view	code	image

SQL>	exec	Student_Instructor.show_population(‘10025’);

It	produces	the	following	result:
Click	here	to	view	code	image

PL/SQL	procedure	successfully	completed.

ResultSet	#1

TYPE				FIRST_NAME																LAST_NAME

––-	––––––––-	––––––––-

Student	Jerry																					Abdou

Student	Nicole																				Gillen

Student	Frank																					Pace

ResultSet	#2

TYPE							FIRST_NAME																LAST_NAME

–––-	––––––––-	––––––––-

Instructor	Tom																							Wojick

Instructor	Nina																						Schorin

Instructor	Todd																						Smythe

Instructor	Charles																			Lowry

Lab	24.2:	Error	Reporting	with	Oracle-Supplied	Packages

After	this	lab,	you	will	be	able	to

	Use	the	DBMS_UTILITY	Package	for	Error	Reporting

	Use	the	UTL_CALL_STACK	Package	for	Error	Reporting

In	Chapters	8,	9,	and	10,	you	explored	various	techniques	for	handling	and	reporting
errors	in	your	programs.	The	examples	that	you	have	seen	so	far	are	quite	simple—that	is,
a	single	script	that	handles	one	or	multiple	exceptions.	Oftentimes	when	working	with
applications,	multiple	programming	units	may	be	calling	each	other	as	well	as	passing
control	of	the	execution	to	a	middle	tier	or	a	front	end.	In	such	circumstances,	proper	error
reporting	is	important.	Without	it,	both	developers	and	users	may	encounter	all	sorts	of
problems.

In	PL/SQL,	two	predefined	packages	may	be	used	for	this	purpose:	DBMS_UTILITY
and	UTL_CALL_STACK.

Using	the	DBMS_UTILITY	Package	for	Error	Reporting
The	DBMS_UTILITY	package	contains	various	utilitarian	subprograms,	some	of	which
enhance	error-reporting	capabilities.	These	error-reporting	functions	are	described	in	Table
24.5.

Table	24.5	Error	Reporting	with	the	DBMS_UTILITY	Package

FORMAT_CALL_STACK

As	mentioned	earlier,	the	FORMAT_CALL_STACK	function	formats	and	returns	the
current	call	stack	up	to	2000	bytes.	It	has	the	syntax	shown	in	Listing	24.1.

Listing	24.1	FORMAT_CALL_STACK
Click	here	to	view	code	image

DBMS_UTILITY.FORMAT_CALL_STACK

RETURN	VARCHAR2;

The	next	example	illustrates	the	use	of	the	FORMAT_CALL_STACK	function.	Note	that
it	employs	stored	procedures.

For	Example		ch24_7.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	first

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(DBMS_UTILITY.FORMAT_CALL_STACK);

END	first;

/

CREATE	OR	REPLACE	PROCEDURE	second

IS

BEGIN

		first;

END	second;

/

CREATE	OR	REPLACE	PROCEDURE	third

IS

BEGIN

		second;

END	third;

/

BEGIN

		third;

END;

The	preceding	script	creates	three	procedures:	FIRST,	SECOND,	and	THIRD.	The
FIRST	procedure	calls	the	FORMAT_CALL_STACK	function,	which	then	returns	the	call
stack	of	the	current	execution.	The	SECOND	procedure	makes	a	call	to	the	FIRST
procedure,	and	the	THIRD	procedure	makes	a	call	to	the	SECOND	procedure.	Finally,	the
anonymous	PL/SQL	block	at	the	end	of	the	example	makes	a	call	to	the	THIRD
procedure.	When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

–—	PL/SQL	Call	Stack	–—

		object			line				object

		handle		number			name

0x104a93040								4		procedure	STUDENT.FIRST

0xa06f8208									4		procedure	STUDENT.SECOND

0x1045f1e68								4		procedure	STUDENT.THIRD

0xa0259658									2		anonymous	block

	This	call	stack	reveals	the	sequence	of	procedure	invocations	and	should	be	read	from
the	bottom	up.	First,	the	anonymous	PL/SQL	block	calls	THIRD,	which	in	turn	calls
SECOND,	which	in	turn	calls	FIRST.	Finally,	the	FIRST	procedure	calls	the
FORMAT_CALL_STACK	function.

FORMAT_ERROR_BACKTRACE

The	FORMAT_ERROR_BACKTRACE	function	formats	and	returns	the	error	backtrace	(up
to	2000	bytes)	associated	with	the	current	error.	It	has	the	syntax	shown	in	Listing	24.2.

Listing	24.2	FORMAT_ERROR_BACKTRACE
Click	here	to	view	code	image

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE

RETURN	VARCHAR2;

Typically,	the	FORMAT_ERROR_BACKTRACE	function	is	called	inside	the	exception
handler,	as	illustrated	by	the	next	example.

For	Example		ch24_8.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	first

IS

		v_name	VARCHAR2(30);

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	FIRST’);

		SELECT	RTRIM(first_name)||’	‘||RTRIM(last_name)

				INTO	v_name

				FROM	student

			WHERE	student_id	=	1000;

END	first;

/

CREATE	OR	REPLACE	PROCEDURE	second

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	SECOND’);

		first;

END	second;

/

CREATE	OR	REPLACE	PROCEDURE	third

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	THIRD’);

		second;

END	third;

/

BEGIN

		third;

EXCEPTION

		WHEN	OTHERS

		THEN

				DBMS_OUTPUT.PUT_LINE	(DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);

END;

Similar	to	the	previous	example,	this	script	uses	stored	procedures	to	illustrate	the
behavior	of	the	FORMAT_ERROR_BACKTRACE	function.	The	FIRST	procedure	employs
a	SELECT	INTO	statement	for	the	nonexistent	student	ID.	The	procedure	itself	does	not
have	an	exception	handler;	instead,	the	exception	handler	appears	within	the	anonymous
PL/SQL	block.	When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

procedure	THIRD

procedure	SECOND

procedure	FIRST

ORA-06512:	at	“STUDENT.FIRST”,	line	7

ORA-06512:	at	“STUDENT.SECOND”,	line	5

ORA-06512:	at	“STUDENT.THIRD”,	line	5

ORA-06512:	at	line	2

	The	first	three	lines	of	the	output	are	produced	by	the	DBMS_OUTPUT.PUT_LINE
statements	placed	in	each	procedure.	The	last	four	lines	of	the	output	are	produced	by	the
FORMAT_ERROR_BACKTRACE	function.	Note	how	this	error	backtrace	demonstrates	the
flow	of	the	execution	to	the	point	where	the	exception	occurred.	Essentially,	it	tells	us	that
the	exception	is	found	on	line	7	in	the	procedure	FIRST.	As	in	the	previous	example,	the
output	of	this	function	should	be	read	from	the	bottom	up.

Only	one	item	is	missing	in	the	output	of	this	example—the	exception	itself.	In	essence,
you	are	able	to	follow	the	execution	path	all	the	way	to	the	precise	line	number	where	the
exception	occurred,	but	you	do	not	know	which	exception	has	occurred.	In	this	very
simple	example,	it	is	easy	to	deduce	that	the	problem	is	a	NO_DATA_FOUND	exception.	In
a	more	complex	environment,	however,	you	may	be	presented	with	much	more	intricate
code	or	may	not	be	as	familiar	with	the	table	structures.	In	these	circumstances,	it	is
essential	to	know	which	exception	was	raised—and	the	FORMAT_ERROR_STACK
function	is	able	to	answer	this	question.

FORMAT_ERROR_STACK

The	FORMAT_ERROR_STACK	function	formats	and	returns	the	current	error	stack	up	to
2000	bytes.	It	has	the	syntax	shown	in	Listing	24.3.

Listing	24.3	FORMAT_ERROR_STACK
Click	here	to	view	code	image

DBMS_UTILITY.FORMAT_ERROR_STACK

RETURN	VARCHAR2;

Like	the	FORMAT_ERROR_BACKTRACE	function,	the	FORMAT_ERROR_STACK
function	is	called	inside	the	exception	handler	as	well.	This	is	illustrated	by	the	modified
version	of	the	previous	example.

For	Example		ch24_9.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	first

IS

		v_name	VARCHAR2(30);

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	FIRST’);

		SELECT	RTRIM(first_name)||’	‘||RTRIM(last_name)

				INTO	v_name

				FROM	student

			WHERE	student_id	=	1000;

END	first;

/

CREATE	OR	REPLACE	PROCEDURE	second

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	SECOND’);

		first;

END	second;

/

CREATE	OR	REPLACE	PROCEDURE	third

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	THIRD’);

		second;

END	third;

/

BEGIN

		third;

EXCEPTION

		WHEN	OTHERS

		THEN

				DBMS_OUTPUT.PUT_LINE	(‘Error	Backtrace:’);

				DBMS_OUTPUT.PUT_LINE	(‘–––––-‘);

				DBMS_OUTPUT.PUT_LINE	(DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);

				DBMS_OUTPUT.PUT_LINE	(‘Error	Stack:’);

				DBMS_OUTPUT.PUT_LINE	(‘–––––-‘);

				DBMS_OUTPUT.PUT_LINE	(DBMS_UTILITY.FORMAT_ERROR_STACK);

END;

When	run,	this	version	of	the	script	produces	the	following	output:
Click	here	to	view	code	image

procedure	THIRD

procedure	SECOND

procedure	FIRST

Error	Backtrace:

–––––-

ORA-06512:	at	“STUDENT.FIRST”,	line	7

ORA-06512:	at	“STUDENT.SECOND”,	line	5

ORA-06512:	at	“STUDENT.THIRD”,	line	5

ORA-06512:	at	line	2

Error	Stack:

–––––-

ORA-01403:	no	data	found

This	version	of	the	output	provides	you	with	the	flow	of	execution	up	to	the	point	where
the	exception	occurred.	It	also	identifies	the	error	number	and	error	message	associated
with	that	exception.

Using	the	UTL_CALL_STACK	Package	for	Error	Reporting
The	UTL_CALL_STACK	package	is	a	new	built-in	package	introduced	in	Oracle	12c.	It
consists	of	a	set	of	functions	that	provide	various	pieces	of	information	on	execution	and
error	stacks,	including	subroutine	and	unit	names	and	individual	line	numbers	for	dynamic
depths.	Some	of	these	functions	are	described	in	Table	24.6.	For	a	complete	list	of	the
UTL_CALL_STACK	subprograms,	refer	to	the	Oracle	Database	PL/SQL	Packages	and
Types	Reference	available	online.

Table	24.6	Error	Reporting	with	the	UTL_CALL_STACK	Package

To	enhance	error	reporting,	the	functions	listed	in	Table	24.6	are	typically	used	in
conjunction	with	other	subroutines	defined	in	the	UTL_CALL_STACK	package.	These
combinations	are	illustrated	further	by	the	examples	in	this	lab.

DYNAMIC_DEPTH

The	DYNAMIC_DEPTH	function	returns	the	number	of	subprograms	in	the	current	call
stack.	It	has	the	syntax	shown	in	Listing	24.4.

Listing	24.4	DYNAMIC_DEPTH
UTL_CALL_STACK.DYNAMIC_DEPTH

RETURN	PLS_INTEGER;

The	use	of	this	function	is	illustrated	by	the	following	example.

For	Example		ch24_10.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	first

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	FIRST’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

END	first;

/

CREATE	OR	REPLACE	PROCEDURE	second

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	SECOND’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		first;

END	second;

/

CREATE	OR	REPLACE	PROCEDURE	third

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	THIRD’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		second;

END	third;

/

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘anonymous	block’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		third;

END;

This	example	creates	three	procedures:	FIRST,	SECOND,	and	THIRD.	Each	procedure
and	the	anonymous	PL/SQL	block	call	the	DYNAMIC_DEPTH	function,	which	then
returns	the	number	of	subprograms	in	the	call	stack	of	the	current	execution.	When	run,
this	example	produces	the	following	output:

anonymous	block

dynamic	depth:	1

procedure	THIRD

dynamic	depth:	2

procedure	SECOND

dynamic	depth:	3

procedure	FIRST

dynamic	depth:	4

	This	output	illustrates	the	dynamic	depth	concept.	The	PL/SQL	block	is	the	currently
executing	subprogram;	its	dynamic	depth	is	1.	Essentially,	this	is	what	has	started	the
execution	stack.	When	this	block	invokes	the	THIRD	procedure,	the	dynamic	depth	of	this
procedure	becomes	2.	Basically,	this	is	what	was	executed	second	in	the	call	stack.
Similarly,	the	dynamic	depth	of	the	SECOND	procedure	is	3,	as	it	was	executed	third.
Finally,	the	dynamic	depth	of	the	FIRST	procedure	is	4,	as	it	was	executed	last.

Backtrace	Depth,	Unit,	and	Line	Functions

The	backtrace	set	of	functions	returns	various	backtrace	data	from	the	point	where	an
exception	was	thrown	to	the	point	where	the	backtrace	is	examined.	The	syntax	of	the
backtrace	functions	is	shown	in	Listing	24.5.

Listing	24.5	Backtrace	Functions
Click	here	to	view	code	image

UTL_CALL_STACK.BACKTRACE_DEPTH

RETURN	PLS_INTEGER;

UTL_CALL_STACK.BACKTRACE_LINE	(backtrace_depth	IN	PLS_INTEGER)

RETURN	PLS_INTEGER;

UTL_CALL_STACK.BACKTRACE_UNIT	(backtrace_depth	IN	PLS_INTEGER)

RETURN	VARCHAR2;

The	use	of	the	backtrace	functions	is	illustrated	by	the	modified	version	of	the	earlier
example.	In	this	version,	the	FIRST	procedure	has	been	modified	to	cause	a
VALUE_ERROR	exception,	and	the	PL/SQL	block	has	been	extended	with	an	exception-
handling	section.	All	changes	are	shown	in	bold.

For	Example		ch24_11.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	first

IS

		v_string	VARCHAR2(3);

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	FIRST’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		v_string	:=	‘ABCDEF’;

END	first;

/

CREATE	OR	REPLACE	PROCEDURE	second

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	SECOND’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		first;

END	second;

/

CREATE	OR	REPLACE	PROCEDURE	third

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	THIRD’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		second;

END	third;

/

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘anonymous	block’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		third;

EXCEPTION

		WHEN	OTHERS

		THEN

				DBMS_OUTPUT.PUT_LINE	(CHR(10)||‘Backtrace	Stack:	‘||CHR(10)||RPAD(‘-‘,

15,	‘-‘));

				DBMS_OUTPUT.PUT_LINE	(‘Backtrace	Depth:

‘||TO_CHAR(UTL_CALL_STACK.BACKTRACE_DEPTH));

				DBMS_OUTPUT.PUT_LINE	(‘Backtrace	Line:	‘	||

		TO_CHAR(UTL_CALL_STACK.BACKTRACE_LINE(UTL_CALL_STACK.BACKTRACE_DEPTH)));

				DBMS_OUTPUT.PUT_LINE	(‘Backtrace	Unit:	‘	||

						UTL_CALL_STACK.BACKTRACE_UNIT(UTL_CALL_STACK.BACKTRACE_DEPTH));

END;

Note	how	the	value	returned	by	the	BACKTRACE_DEPTH	function	is	used	as	an	input

parameter	to	the	BACKTRACE_LINE	and	BACKTRACE_UNIT	functions.	When	run,	this
script	produces	the	following	output:

anonymous	block

dynamic	depth:	1

procedure	THIRD

dynamic	depth:	2

procedure	SECOND

dynamic	depth:	3

procedure	FIRST

dynamic	depth:	4

Backtrace	Stack:

–––––

Backtrace	Depth:	4

Backtrace	Line:	7

Backtrace	Unit:	STUDENT.FIRST

The	backtrace	stack	reports	that	an	exception	was	encountered	in	the	backtrace	depth	4,
on	line	number	7	in	the	subroutine	called	FIRST	in	the	STUDENT	schema.	This	is	very
detailed	backtrace	output	for	such	a	simple	example,	yet	it	is	still	missing	the	exception
itself.	The	set	of	error	functions	described	next	covers	this	exception-reporting	gap.

Error	Depth,	Message,	and	Number	Functions

Another	set	of	error	functions	returns	the	error	depth,	message,	and	number	of	an	error	in
the	current	stack.	They	have	the	syntax	shown	in	Listing	24.6.

Listing	24.6	Error	Functions
Click	here	to	view	code	image

UTL_CALL_STACK.ERROR_DEPTH

RETURN	PLS_INTEGER;

UTL_CALL_STACK.ERROR_MSG	(error_depth	IN	PLS_INTEGER)

RETURN	VARCHAR2;

UTL_CALL_STACK.ERROR_NUMBER	(error_depth	IN	PLS_INTEGER)

RETURN	VARCHAR2;

Next	consider	how	these	functions	may	be	utilized	for	error	reporting.	In	this	version	of
the	script,	the	exception-handling	section	includes	calls	to	these	functions.	All	changes	are
shown	in	bold.

For	Example		ch24_12.sql
Click	here	to	view	code	image

CREATE	OR	REPLACE	PROCEDURE	first

IS

		v_string	VARCHAR2(3);

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	FIRST’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		v_string	:=	‘ABCDEF’;

END	first;

/

CREATE	OR	REPLACE	PROCEDURE	second

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	SECOND’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		first;

END	second;

/

CREATE	OR	REPLACE	PROCEDURE	third

IS

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘procedure	THIRD’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		second;

END	third;

/

BEGIN

		DBMS_OUTPUT.PUT_LINE	(‘anonymous	block’);

		DBMS_OUTPUT.PUT_LINE	(‘dynamic	depth:

‘||TO_CHAR(UTL_CALL_STACK.DYNAMIC_DEPTH));

		third;

EXCEPTION

		WHEN	OTHERS

		THEN

				DBMS_OUTPUT.PUT_LINE	(CHR(10)||‘Backtrace	Stack:	‘||CHR(10)||RPAD(‘-‘,

15,	‘-‘));

				DBMS_OUTPUT.PUT_LINE	(‘Backtrace	Depth:

‘||TO_CHAR(UTL_CALL_STACK.BACKTRACE_DEPTH));

				DBMS_OUTPUT.PUT_LINE	(‘Backtrace	Line:	‘	||

TO_CHAR(UTL_CALL_STACK.BACKTRACE_LINE(UTL_CALL_STACK.BACKTRACE_DEPTH)));

			DBMS_OUTPUT.PUT_LINE	(‘Backtrace	Unit:	‘	||

					UTL_CALL_STACK.BACKTRACE_UNIT(UTL_CALL_STACK.BACKTRACE_DEPTH));

			DBMS_OUTPUT.PUT_LINE	(CHR(10)||‘Error	Info:	‘||CHR(10)||RPAD(‘-‘,	15,

‘-‘));

				DBMS_OUTPUT.PUT_LINE	(‘Error	Depth:

‘		||TO_CHAR(UTL_CALL_STACK.ERROR_DEPTH));

			DBMS_OUTPUT.PUT_LINE	(‘Error	Number:	‘	||

					TO_CHAR(UTL_CALL_STACK.ERROR_NUMBER	(UTL_CALL_STACK.ERROR_DEPTH)));

			DBMS_OUTPUT.PUT_LINE	(‘Error	Message:	‘||

					UTL_CALL_STACK.ERROR_MSG(UTL_CALL_STACK.ERROR_DEPTH));

END;

When	run,	this	example	produces	the	following	output:
Click	here	to	view	code	image

anonymous	block

dynamic	depth:	1

procedure	THIRD

dynamic	depth:	2

procedure	SECOND

dynamic	depth:	3

procedure	FIRST

dynamic	depth:	4

Backtrace	Stack:

–––––

Backtrace	Depth:	4

Backtrace	Line:	7

Backtrace	Unit:	STUDENT.FIRST

Error	Info:

–––––

Error	Depth:	1

Error	Number:	6502

Error	Message:	PL/SQL:	numeric	or	value	error:	character	string	buffer	too

small

Note	how	the	output	now	contains	the	error	depth,	number,	and	message.	In	a	more
complex	environment,	this	type	of	trace	data	can	provide	invaluable	insight	for	PL/SQL
developers—insight	that	is	essential	in	diagnosing	and	resolving	problems	in	PL/SQL
code	efficiently.

This	lab	has	covered	only	some	of	the	functions	of	the	UTL_CALL_STACK	package.
For	additional	information	on	how	to	utilize	this	package	fully,	refer	to	the	Oracle
Database	PL/SQL	Packages	and	Types	Reference	available	online.

Summary
In	this	chapter,	you	learned	about	a	variety	of	Oracle-supplied	packages	that	can	be	used
to	extend	the	functionality	of	your	programs.	The	strategy	of	accessing	files	on	the
operating	system	within	a	stored	procedure	by	making	use	of	UTL_FILE	was	reviewed.
You	also	learned	how	to	analyze	SQL	by	making	use	of	the	explain	plan	generated	by
DBMS_XPLAN.	In	addition,	you	saw	how	to	generate	implicit	statement	results	with
DBMS_SQL.	The	chapter	concluded	with	a	discussion	of	the	use	of	DBMS_UTILITY	and
UTL_CALL_STACK	for	error	reporting.

25.	Optimizing	PL/SQL

In	this	chapter,	you	will	learn	about

	PL/SQL	Tuning	Tools

	PL/SQL	Optimization	Levels

	Subprogram	Inlining

Oftentimes	database	developers	need	to	improve	the	performance	of	their	code	when
working	in	a	complex	development	environment.	The	starting	point	of	such	exercise	is
usually	the	performance	evaluation	of	the	DML	statements	embedded	in	the	PL/SQL	code
and	their	subsequent	tuning.	Once	these	statements	have	been	improved,	the	tuning	task	is
considered	complete	and	the	performance	optimization	of	the	PL/SQL	code	itself	is
usually	overlooked.

In	fact,	Oracle	provides	a	set	of	tools	to	help	you	identify	performance	bottlenecks	and
a	wide	variety	of	the	optimization	techniques	specifically	geared	toward	PL/SQL.	For
example,	you	have	already	seen	how	to	minimize	the	number	of	context	switches	between
PL/SQL	and	SQL	engines	and	achieve	better	performance	by	employing	bulk	SQL	and
bulk	binding.	In	this	chapter,	you	will	learn	about	the	PL/SQL	Profiler	and	Trace	APIs,	the
PL/SQL	Hierarchical	Profiler	tools,	and	the	application	of	these	tools	to	identify	potential
performance	issues.	In	addition,	you	will	learn	about	the	PL/SQL	performance	optimizer
and	its	optimization	levels,	and	discover	a	new	optimization	technique	called	subprogram
inlining.

Lab	25.1:	PL/SQL	Tuning	Tools

After	this	lab,	you	will	be	able	to

	Use	the	PL/SQL	Profiler	API

	Use	the	Trace	API

	Use	the	PL/SQL	Hierarchical	Profiler

As	mentioned	previously,	Oracle	provides	specific	tools	to	help	you	diagnose	performance
issues	in	PL/SQL	code:	PL/SQL	Profiler	API,	Trace	API,	and	PL/SQL	Hierarchical
Profiler.	All	of	these	tools	are	implemented	via	Oracle-supplied	packages,	which	makes
them	both	readily	available	and	fairly	easy	to	install	and	use.

PL/SQL	Profiler	API
The	PL/SQL	Profiler	API	is	implemented	via	the	DBMS_PROFILER	package.	It
computes	how	much	time	a	PL/SQL	program	spends	on	executing	each	line	of	code	and
saves	these	computed	times	in	database	tables	that	may	be	queried	later.

The	following	scripts	located	in	the	RDBMS/ADMIN	directory	are	required	to	install

the	PL/SQL	Profiler	API:

	PROFTAB.sql	creates	tables	used	by	the	profiler:	PL/SQL_PROFILER_DATA,
PLSQL_PROFILER_RUNS,	and	PLSQL_PROFILER_UNITS.	This	script	should
be	executed	by	the	STUDENT	user.

	PROFLOAD.sql	creates	the	DBMS_PROFILER	package,	and	sets	up	synonyms	and
permissions	for	its	usage.	This	script	should	be	executed	by	the	SYS	user	(connect
as	SYSDBA).	The	STUDENT	user	must	be	granted	execute	privileges	on	the
DBMS_PROFILER	package	to	run	this	script.

The	main	subprograms	of	the	PL/SQL	Profiler	API	are	described	in	Table	25.1.	More
detailed	information	on	the	DBMS_PROFILER	routines,	exceptions,	and	tables	may	be
found	in	the	Introduction	to	Oracle	Supplied	PL/SQL	Packages	&	Types,	which	is
available	online	as	part	of	Oracle’s	documentation.

Table	25.1	DBMS_PROFILER	Main	Subprograms

This	lab	introduces	the	PL/SQL	Profiler	API,	whereas	Lab	25.1	demonstrates	how	this
tool	may	be	used	to	profile	your	code.

Trace	API
The	Trace	API	is	implemented	via	the	DBMS_TRACE	package.	Oftentimes	this	tool	is
used	in	conjunction	with	the	PL/SQL	Profiler	API,	as	it	provides	an	additional	level	of
detail	and	context	to	the	performance	statistics	captured	by	the	profiler.	The	Trace	API
traces	the	order	of	the	execution	of	the	PL/SQL	routines	and	saves	this	data	in	database
tables	that	may	be	queried	later.

The	following	scripts	located	in	the	RDBMS/ADMIN	directory	are	required	to	install
the	Trace	API:

	TRACETAB.sql	creates	tables	used	by	the	Trace	API:	PLSQL_TRACE_RUNS	and
PLSQL_TRACE_EVENTS.	This	script	should	be	executed	by	the	SYS	user.	The
appropriate	permissions	(SELECT,	INSERT,	and	DELETE)	must	be	granted	to	the

STUDENT	user	to	run	this	script.	You	might	also	find	it	helpful	to	create	synonyms
for	these	tables.

	The	DBMS_TRACE	package	is	usually	installed	as	part	of	the	default	installation.
However,	the	execute	privileges	may	need	to	be	granted	to	the	STUDENT	schema.
This	should	be	accomplished	by	the	SYS	user.

The	main	subprograms	of	the	Trace	API	are	described	in	Table	25.2.	More	detailed
information	on	the	DBMS_TRACE	routines,	exceptions,	and	tables	may	be	found	in	the
Introduction	to	Oracle	Supplied	PL/SQL	Packages	&	Types,	which	is	available	online	as
part	of	Oracle’s	documentation.

Table	25.2	DBMS_TRACE	Main	Subprograms

As	mentioned	previously,	the	content	and	volume	of	the	trace	data	are	based	on	the
trace	level,	which	is	supplied	when	the	trace	starts	and	is	based	on	the	DBMS_TRACE
constants	listed	in	Table	25.3.	A	full	and	detailed	description	of	the	DBMS_TRACE
constants	may	be	found	in	the	Introduction	to	Oracle	Supplied	PL/SQL	Packages	&	Types,
which	is	available	online	as	part	of	Oracle’s	documentation.

Table	25.3	DBMS_TRACE	Main	Constants

Tracing	in	PL/SQL	programs	can	be	enabled	at	the	session	level	via	the	ALTER
SESSION	command	or	for	a	particular	stored	PL/SQL	routine	via	the	ALTER	command:
Click	here	to	view	code	image

ALTER	SESSION	SET	PLSQL_DEBUG	=	TRUE;

or
Click	here	to	view	code	image

ALTER	[PROCEDURE/FUNCTION/PACKAGE]	ROUTINE_NAME

COMPILE	DEBUG	[BODY	(applicable	to	packages	only)]

Consider	the	following	example,	which	traces	a	simple	PL/SQL	procedure	created
specifically	for	this	purpose:

For	Example		ch25_1a.sql
Click	here	to	view	code	image

ALTER	SESSION	SET	PLSQL_DEBUG	=	TRUE;

—	Create	test	procedure	to	be	traced

CREATE	OR	REPLACE	PROCEDURE	TEST_TRACE

AS

		v_num1	NUMBER;

		v_num2	NUMBER;

		v_num3	NUMBER;

		v_date	DATE;

BEGIN

		FOR	i	IN	1..10

		LOOP

				v_num1	:=	1;

				v_num2	:=	i	+	i/2	+	sqrt(i);

				v_num3	:=	v_num1	+	v_num2;

				SELECT	sysdate

						INTO	v_date

						FROM	DUAL;

		END	LOOP;

END	TEST_TRACE;

/

—	Trace	TEST_TRACE	procedure

BEGIN

		DBMS_TRACE.SET_PLSQL_TRACE	(DBMS_TRACE.TRACE_ALL_CALLS);

		TEST_TRACE;

		DBMS_TRACE.CLEAR_PLSQL_TRACE;

END;

In	this	script,	the	database	session	has	been	enabled	for	tracing.	As	a	result,	the
TEST_TRACE	procedure	created	in	this	session	is	compiled	with	the	DEBUG	option	and,
therefore,	is	available	for	tracing	as	well.	The	execution	of	the	newly	created	procedure	is
then	traced	in	the	PL/SQL	block.	Note	that	the	level	of	tracing	has	been	set	via	the
DBMA_TRACE.TRACE_ALL_CALLS	constant.

Once	the	procedure	is	created	and	the	PL/SQL	block	is	executed,	the	trace	data	may	be
examined	by	querying	the	PLSQL_TRACE_RUNS	and	PLSQL_TRACE_EVENTS	tables
as	shown	here:
Click	here	to	view	code	image

SELECT	r.runid

						,e.event_seq

						,e.event_unit_owner

						,e.event_unit

						,e.event_unit_kind

						,e.proc_line

						,e.event_comment

		FROM	plsql_trace_runs		r

						,plsql_trace_events	e

	WHERE	r.runid	=	1	–-	this	value	must	change	based	on	the	number	of	traces

run

			AND	r.runid	=	e.runid

ORDER	BY	r.runid,	e.event_seq;

RUNID	EVENT

EVENT								EVENT_UNIT				EVENT_UNIT_KIND		PROC_LINE		EVENT_COMMENT

						SEQ			UNIT_

												OWNER

			1				1																																																										PL/SQL

Trace	Tool	started

			1				2																																																										Trace

flags	changed

			1				3				SYS								DBMS_TRACE		PACKAGE	BODY													75				Return

from	procedure	call

			1				4				SYS								DBMS_TRACE		PACKAGE	BODY													81				Return

from	procedure	call

			1				5				SYS								DBMS_TRACE		PACKAGE	BODY														3				Return

from	procedure	call

			1				6															<anonymous>	ANONYMOUS

BLOCK											1				Procedure	Call

			1				7				STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				8				STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				9				STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				10			STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				11			STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				12			STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				13			STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				14			STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				15			STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				16			STUDENT				TEST_TRACE		PROCEDURE																						PL/SQL

Internal	Call

			1				17			STUDENT				TEST_TRACE		PROCEDURE																4					Return

from	procedure	call

			1				18														<anonymous>	ANONYMOUS

BLOCK									92					Procedure	Call

			1				19			SYS								DBMS_TRACE		PACKAGE

BODY												69					Procedure	Call

			1				20			SYS								DBMS_TRACE		PACKAGE

BODY												64					Procedure	Call

			1				21			SYS								DBMS_TRACE		PACKAGE

BODY												12					Procedure	Call

			1				22			SYS								DBMS_TRACE		PACKAGE	BODY												66					Return

from	procedure	call

			1				23			SYS								DBMS_TRACE		PACKAGE	BODY												72					Return

from	procedure	call

			1				24			SYS								DBMS_TRACE		PACKAGE

BODY												21					Procedure	Call

			1				25																																																									PL/SQL

trace	stopped

PL/SQL	Hierarchical	Profiler
The	PL/SQL	Hierarchical	Profiler	is	implemented	via	the	DBMS_HPROF	package.	It
profiles	the	execution	of	PL/SQL	applications	and	reports	on	the	execution	times	for	SQL
and	PL/SQL	separately.	The	Hierarchical	Profiler	organizes	the	run-time	data	it	collects
based	on	subprogram	calls.	Similarly	to	the	PL/SQL	Profiler	and	Trace	APIs,	it	stores	the
collected	statistics	in	database	tables	that	may	be	queried	later.

The	following	scripts	located	in	the	RDBMS/ADMIN	directory	are	required	to	install
the	PL/SQL	Hierarchical	Profiler	API:

	DBMSHPTAB.sql	creates	the	tables	used	by	the	Hierarchical	Profiler:
DBMSHP_RUNS,	DBMSHP_FUNCTION_INFO,	and
DBMSHP_PARENT_CHILD_INFO.	This	script	may	be	executed	by	the	STUDENT
user.

	The	STUDENT	user	needs	read	and	write	privileges	on	the	directory	object	and	the
directory	itself	to	which	the	directory	object	is	mapped.	Note	that	these	steps	should
be	executed	by	the	SYS	user	(connect	as	SYSDBA).

	For	example,	if	the	file	system	includes	the	/plshprof/results	directory,	the
following	statement	creates	the	directory	object	PLSHPROF_DIR	and	maps	it	to
this	directory:

Click	here	to	view	code	image

CREATE	DIRECTORY	PLSHPOF_DIR	AS	‘/plshprof/results’;

GRANT	READ,	WRITE	ON	DIRECTORY	PLSHPOF_DIR	TO	STUDENT;

	The	DBMS_HPROF	package	is	usually	installed	as	part	of	the	default	installation.
However,	the	execute	privileges	may	need	to	be	granted	to	the	STUDENT	schema.
This	should	be	accomplished	by	the	SYS	user	(connect	as	SYSDBA).

The	main	subprograms	of	the	PL/SQL	Hierarchical	Profiler	are	described	in	Table	25.4.
More	detailed	information	on	the	DBMS_HPROF	routines,	exceptions,	and	tables	may	be
found	in	the	Introduction	to	Oracle	Supplied	PL/SQL	Packages	&	Types,	which	is
available	online	as	part	of	Oracle’s	documentation.

Table	25.4	DBMS_HPROF	Main	Subprograms

Use	of	the	PL/SQL	Hierarchical	Profiler	is	demonstrated	in	Lab	25.3.

Lab	25.2:	PL/SQL	Optimization	Levels

After	this	lab,	you	will	be	able	to

	Understand	PL/SQL	Optimization	Levels

In	version	10g,	Oracle	introduced	a	new	feature	to	PL/SQL	compiler,	called	the
performance	optimizer.	Essentially,	the	optimizer	enables	the	PL/SQL	compiler	to
reorganize	source	code	to	enhance	its	performance.	The	level	of	optimization	that
compiler	applies	to	the	code	is	controlled	by	the	PLSQL_OPTIMIZE_LEVEL	parameter,
which	may	be	set	at	the	instance	or	session	level.	These	levels	of	optimization	are	listed	in
the	Table	25.5.

Table	25.5	PL/SQL	Optimization	Levels

To	illustrate	how	PL/SQL	code	performance	is	affected	by	different	optimization	levels,
consider	a	simple	example	that	executes	a	numeric	FOR	LOOP	and	performs	some
meaningless	calculations.	It	is	executed	with	PLSQL_OPTIMIZE_LEVEL	set	to	0,	1,	and
2,	respectively.	In	addition,	it	uses	the	PL/SQL	Profiler	so	that	you	can	get	a	closer	look	at
how	and	where	the	performance	actually	occurs.	Note	that	the	line	numbers	listed	in	the
example	are	provided	for	future	reference	and	are	not	part	of	the	actual	PL/SQL	code.	The
SET	TIMING	ON	command	enables	Oracle	to	measure	and	display	the	execution	time	of
the	script.	The	ALTER	SESSION	command	sets	the	PL_SQL_OPTIMIZE	level	variable
to	a	specified	value	at	the	session	level.

Watch	Out!

Prior	to	running	examples	used	in	this	lab,	the	STUDENT	schema	should	be
enabled	to	use	the	PL/SQL	Profiler	API	as	described	in	Lab	25.1.

For	Example		ch25_2a.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	0;

1	DECLARE

2			v_num1			NUMBER;

3			v_num2			NUMBER;

4			v_num3			NUMBER;

5			v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

6	BEGIN

7			DBMS_PROFILER.START_PROFILER	(‘Optimizer	level	at	0’);

8

9			FOR	i	IN	1..1000000

10		LOOP

11				v_num1	:=	1;

12				v_num2	:=	i	+	i/2	+	sqrt(i);

13				v_num3	:=	v_num1	+	v_num2;

14		END	LOOP;

15

16		DBMS_PROFILER.STOP_PROFILER();

17

18		SELECT	runid

19				INTO	v_run_id

20				FROM	plsql_profiler_runs

21			WHERE	run_comment	=	‘Optimizer	level	at	0’;

22

23			DBMS_OUTPUT.PUT_LINE	(‘Optimizer	level	at	0,	run	ID	-	‘||v_run_id);

24	END;

As	mentioned	previously,	this	script	performs	some	worthless	calculations	and	employs
the	PL/SQL	Profiler	API	to	collect	runtime	statistics.	To	analyze	these	run-time	statistics,
it	defines	the	v_run_id	variable	to	store	the	ID	of	the	profiler	run.	This	ID	is	selected
from	the	PLSQL_PROFILER_RUNS	table	and	displayed	at	the	end	of	the	script.	The
profiler	runtime	data	collection	starts	with	the	DBMS_PROFILER.START_PROFILER
procedure	and	ends	with	the	DBMS_PROFILER.STOP_PROFILER	procedure.

When	run,	the	script	produces	the	following	output:
Click	here	to	view	code	image

Elapsed:	00:00:03.317

Optimizer	level	at	0,	run	ID	-	1

	The	first	line	of	the	output	is	shown	in	the	Script	Output	window	when	this	script	is
executed	in	the	SQL	Developer.	For	the	second	run,	the	PLSQL_OPTIMIZE_LEVEL	is
set	to	1	and	the	script	is	modified	as	shown.	All	changes	are	highlighted	in	bold.

For	Example		ch25_2b.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	1;

1	DECLARE

2			v_num1			NUMBER;

3			v_num2			NUMBER;

4			v_num3			NUMBER;

5			v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

6	BEGIN

7			DBMS_PROFILER.START_PROFILER	(‘Optimizer	level	at	1’);

8

9			FOR	i	IN	1..	1000000

10		LOOP

11				v_num1	:=	1;

12				v_num2	:=	i	+	i/2	+	sqrt(i);

13				v_num3	:=	v_num1	+	v_num2;

14		END	LOOP;

15

16		DBMS_PROFILER.STOP_PROFILER();

17

18		SELECT	runid

19				INTO	v_run_id

20				FROM	plsql_profiler_runs

21			WHERE	run_comment	=	‘Optimizer	level	at	1’;

22

23			DBMS_OUTPUT.PUT_LINE	(‘Optimizer	level	at	1,	run	ID	-	‘||v_run_id);

24	END;

When	run,	this	version	produces	the	following	output:
Click	here	to	view	code	image

Elapsed:	00:00:03.103

Optimizer	level	at	1,	run	ID	–	2

Note	that	there	is	a	very	negligible	performance	gain	between	the	two	runs.

Next,	consider	yet	another	version	of	the	example	where	PLSQL_OPTIMIZE_LEVEL
is	set	to	2	and	the	PL/SQL	block	is	modified	accordingly.	Affected	statements	are
highlighted	in	bold.

For	Example		ch25_2c.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

1	DECLARE

2			v_num1		NUMBER;

3			v_num2		NUMBER;

4			v_num3		NUMBER;

5			v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

6	BEGIN

7			DBMS_PROFILER.START_PROFILER	(‘Optimizer	level	at	2’);

8

9			FOR	i	IN	1..	1000000

10		LOOP

11				v_num1	:=	1;

12				v_num2	:=	i	+	i/2	+	sqrt(i);

13				v_num3	:=	v_num1	+	v_num2;

14		END	LOOP;

15

16		DBMS_PROFILER.STOP_PROFILER();

17

18		SELECT	runid

19				INTO	v_run_id

20				FROM	plsql_profiler_runs

21			WHERE	run_comment	=	‘Optimizer	level	at	2’;

22

23			DBMS_OUTPUT.PUT_LINE	(‘Optimizer	level	at	2,	run	ID	-	‘||v_run_id);

24	END;

When	run,	this	version	produces	the	following	output:
Click	here	to	view	code	image

Elapsed:	00:00:02.562

Optimizer	level	at	2,	run	ID	-	3

With	the	PLSQL_OPTIMIZE_LEVEL	set	to	2,	the	gain	in	performance	is	more
noticeable.

What	has	happened	since	the	optimization	level	was	changed	from	0	to	1	to	2?	To
answer	this	question,	let’s	examine	data	generated	by	the	PL/SQL	Profiler:
Click	here	to	view	code	image

SELECT	r.runid,	r.run_comment,	d.line#,	d.total_occur,	d.total_time

		FROM	plsql_profiler_runs			r

							,plsql_profiler_data		d

							,plsql_profiler_units	u

	WHERE	r.runid	=	d.runid

			AND	d.runid	=	u.runid

			AND	d.unit_number	=	u.unit_number

			AND	d.total_occur	>	0

ORDER	BY	d.runid,	d.line#;

RUNID										RUN_COMMENT																					LINE#												TOTAL_OCCUR									TOTAL_TIME

–—										––––––—												–—												–––—									–––-

1														Optimizer	level	at

0												9																1000001													128784207

1														Optimizer	level	at

0												11															1000000													204515328

1														Optimizer	level	at

0												12															1000000													1928730621

1														Optimizer	level	at

0												13															1000000													235407659

1														Optimizer	level	at

0												14															1																			0

1														Optimizer	level	at

0												16															1																			13032

2														Optimizer	level	at

1												9																1000001													122832257

2														Optimizer	level	at

1												11															1000000													143920674

2														Optimizer	level	at

1												12															1000000													1820567385

2														Optimizer	level	at

1												13															1000000													181771219

2														Optimizer	level	at

1												14															1																			0

2														Optimizer	level	at

1												16															1																			12000

3														Optimizer	level	at

2												9																1000001													134848732

3														Optimizer	level	at

2												11															1000000													0

3														Optimizer	level	at

2												12															1000000													1583962321

3														Optimizer	level	at

2												13															1000000													188121402

3														Optimizer	level	at

2												16															1																			10015

The	SELECT	statement	selects	data	from	the	PL/SQL	profiler	tables	for	each	line	of	the
code	that	was	executed	(d.total_occur	>	0).	Take	a	closer	look	at	the	data
generated	for	line	11	(highlighted	in	bold).	Line	11	corresponds	to	the	assignment
statement

11				v_num1	:=	1;

in	the	body	of	the	numeric	FOR	LOOP.	Note	that	even	though	line	11	is	executed	1
million	times	for	run	IDs	1	and	2	(optimization	levels	0	and	1,	respectively),	there	is	a
performance	gain	shown	in	the	TOTAL_TIME	column.	Next,	take	a	look	at	line	11	for	run
ID	3	(optimization	level	2).	Although	the	TOTAL_OCCUR	column	states	that	the
assignment	statement	has	executed	1	million	times,	the	total	time	spent	on	this	operation
was	0.	How	is	that	possible?

Recall	that	setting	the	optimization	level	to	2	enables	code	relocation	and	rewriting.
Thus	it	is	possible	that	the	assignment	operation	at	line	11	was	relocated	outside	the	loop,
or	that	variable	v_num1	was	removed	all	together	and	its	value	was	substituted	on	line
13.	So,	the	original	statement
Click	here	to	view	code	image

13				v_num3	:=	v_num1	+	v_num2;

could	have	become
13				v_num3	:=	1	+	v_num2;

Another	important	optimization	technique	introduced	for	optimization	level	2	is	implicit
bulk	fetches	for	static	CURSOR	FOR	LOOPs	with	a	limit	of	100	records.	Thus,	if	a	piece
of	code	fetches	and	processes	records	in	the	CURSOR	FOR	LOOP	one	at	time,	with	level
2	optimization	the	records	will	be	fetched	in	a	bulk,	100	records	at	a	time.	This	approach
yields	a	significant	performance	improvement,	as	demonstrated	by	the	following	example.

For	Example		ch25_3a.sql
Click	here	to	view	code	image

SET	TIMING	ON;

—	Create	test	table

CREATE	TABLE	TEST_TAB

		(col1	NUMBER);

/

—	Populate	newly	created	table	with	random	data

INSERT	INTO	TEST_TAB

SELECT	ROUND(DBMS_RANDOM.VALUE	(1,	99999999),	0)

		FROM	dual

CONNECT	by	level	<	100001;

COMMIT;

—	Collect	statistics

EXEC	DBMS_STATS.GATHER_TABLE_STATS	(user,	‘TEST_TAB’);

—	Run	the	same	code	sample	with	different	optimization	levels

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	1;

BEGIN

		FOR	rec	IN	(SELECT	col1	FROM	test_tab)

		LOOP

				null;	—	do	nothing

		END	LOOP;

END;

/

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

BEGIN

		FOR	REC	IN	(SELECT	col1	FROM	test_tab)

		LOOP

				NULL;	—	do	nothing

		END	LOOP;

END;

/

First,	this	script	creates	the	TEST_TAB	table.	Then,	it	populates	the	TES_TAB	table
with	some	random	numeric	data	and	gathers	table	statistics	via	the
DBMS_STATS.GATHER_TABLE_STATS	procedure.

Did	You	Know?

That	DBMS_STATS	package	is	used	to	gather	various	statistics	on	database
objects.	These	statistics	may	be	gathered	for	one	database	object	at	a	time,	as
in	the	preceding	example,	or	for	all	objects	in	the	database	or	schema.

Next,	the	script	sets	optimizer	level	to	1,	and	executes	the	CURSOR	FOR	LOOP
against	the	TEST_TAB	table.	Note	the	usage	of	the	NULL;	statement	in	the	body	of	the
loop.	Essentially,	it	means	that	nothing	is	done	in	the	body	of	the	loop.	Finally,	the	script
sets	the	optimizer	level	to	2	and	executes	the	CURSOR	FOR	LOOP	again.

When	run,	this	example	produces	the	following	output:
table	TEST_TAB	created.

Elapsed:	00:00:00.060

100,000	rows	inserted.

Elapsed:	00:00:01.595

committed.

Elapsed:	00:00:00.016

anonymous	block	completed

session	SET	altered.

Elapsed:	00:00:00.001

anonymous	block	completed

Elapsed:	00:00:00.767

session	SET	altered.

Elapsed:	00:00:00.002

anonymous	block	completed

Elapsed:	00:00:00.080

Take	a	closer	look	at	the	elapsed	times	highlighted	in	bold.	The	execution	time	went
from	.767	to	.080.	This	is	a	significant	improvement	for	such	a	simple	script.	Next,
consider	expanding	on	this	example	by	creating	a	new	table	TEST_TAB1	and	populating
it	in	the	CURSOR	FOR	LOOP.	Much	like	the	preceding	example,	this	version	is	executed
for	optimizer	levels	1	and	2.

For	Example		ch25_4a.sql

Click	here	to	view	code	image

SET	TIMING	ON;

—	Create	test	table

CREATE	TABLE	test_tab1	(col1	NUMBER);

/

—	Run	the	same	code	sample	with	different	optimization	levels

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	1;

BEGIN

		FOR	rec	IN	(SELECT	col1	FROM	test_tab)

		LOOP

				INSERT	INTO	TEST_TAB1	VALUES	(rec.col1);	—	populate	newly	created

table

		END	LOOP;

END;

/

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

BEGIN

		FOR	REC	IN	(SELECT	col1	FROM	test_tab)

		LOOP

				INSERT	INTO	TEST_TAB1	VALUES	(rec.col1);	—	populate	newly	created

table

		END	LOOP;

END;

/

This	example	produces	the	following	output:
table	TEST_TAB1	created.

Elapsed:	00:00:00.059

session	SET	altered.

Elapsed:	00:00:00.001

anonymous	block	completed

Elapsed:	00:00:10.683

session	SET	altered.

Elapsed:	00:00:00.002

anonymous	block	completed

Elapsed:	00:00:09.668

As	soon	as	the	INSERT	statement	has	been	added	to	the	body	of	the	loop,	the	major
performance	gain	between	two	optimization	levels	is	lost.	This	is	due	to	lack	of	implicit
optimization	for	the	DML	statements.	In	this	case,	better	performance	is	gained	by
changing	the	script	and	adding	bulk	SQL	optimization	techniques	(covered	in	Chapter	18).

The	last	two	examples	demonstrate	very	clearly	that	while	it	is	helpful	to	recognize	that
PL/SQL	optimization	may	occur	behind	the	scenes,	it	is	not	a	good	idea	to	rely	exclusively
on	it.	While	sometimes	the	code	you	create	may	be	optimized	at	the	time	of	compilation,	it
is	much	better	to	go	through	the	optimization	exercise	and	change	that	code	explicitly
based	on	the	performance	findings.

Lab	25.3:	Subprogram	Inlining

After	this	lab,	you	will	be	able	to

	Use	Subprogram	Inlining

In	Lab	25.2,	you	learned	about	different	PL/SQL	optimization	levels.	Specifically,	you
saw	examples	with	optimization	levels	of	0,	1,	and	2.	In	this	lab,	you	will	learn	about	the
concept	of	subprogram	inlining	and	discover	how	it	is	used	with	optimization	level	3.

In	the	PL/SQL	Language	Reference,	subprogram	inlining	concept	is	defined	as	follows:
“Subprogram	inlining	replaces	a	subprogram	invocation	with	a	copy	of	the	invoked
subprogram	(if	the	invoked	and	invoking	subprograms	are	in	the	same	program	unit).”
Subprogram	inlining	may	be	enabled	either	by	using	the	PRAGMA	statement	or	by	setting
PLSQL_OPTIMIZE_LEVEL	to	3	as	shown	in	Listing	25.1.

Listing	25.1	Enabling	Subprogram	Inlining
Click	here	to	view	code	image

PRAGMA	INLINE	(subprogram_name,	‘YES’);

or
Click	here	to	view	code	image

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	3;

When	a	PRAGMA	INLINE	statement	is	used,	it	should	appear	prior	to	each
subprogram	call.	Recall	that	PLSQL_OPTIMIZE_LEVEL	may	be	set	to	a	particular	value
at	the	instance	level	as	well.	When	PLSQL_OPTIMIZE_LEVEL	is	set	to	3,	subprogram
inlining	is	done	automatically.

The	usage	of	subprogram	inlining	and	the	performance	gains	associated	with	it	are	best
illustrated	by	examining	some	examples.	In	these	scripts,	the	same	PL/SQL	code	is
executed	twice.	For	both	runs,	the	PL/SQL	optimization	level	remains	at	2,	but
subprogram	inlining	is	enabled	for	the	second	run	only.	The	line	numbers	in	the	examples
are	provided	for	future	reference	and	are	not	part	of	the	actual	PL/SQL	code.

Watch	Out!

Prior	to	running	the	examples	in	this	lab,	the	STUDENT	schema	should	be
extended	to	use	the	PL/SQL	Hierarchical	Profiler.	The	necessary	steps	are
described	in	Lab	25.1.

For	Example		ch25_5a.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

1		DECLARE

2				v_num				PLS_INTEGER;

3				v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

4

5				FUNCTION	test_func	(num1	IN	PLS_INTEGER

6																							,num2	IN	PLS_INTEGER)

7				RETURN	PLS_INTEGER

8				IS

9				BEGIN

10					RETURN	(num1	+	num2);

11			END	test_func;

12

13	BEGIN

14			DBMS_HPROF.START_PROFILING	(‘PLSHPROF_DIR’,	‘test.txt’);

15			FOR	i	IN	1..100000

16			LOOP

17					v_num	:=	test_func	(i-1,	i);

18			END	LOOP;

19			DBMS_HPROF.STOP_PROFILING;

20

21			—	Analyze	profiler	output	and	display	its	run	ID

22			v_run_id	:=	DBMS_HPROF.ANALYZE	(‘PLSHPROF_DIR’,	‘test.txt’);

23			DBMS_OUTPUT.PUT_LINE	(‘Inline	pragma	is	not	enabled,	run	ID	-

‘||v_run_id);

24	END;

This	script	defines	a	function	test_func	that	returns	the	sum	of	two	numbers.	This
function	is	then	invoked	in	the	body	of	the	numeric	FOR	LOOP,	where	its	result	is
assigned	to	the	variable	v_num.	The	execution	of	loop	is	profiled	by	the	PL/SQL
Hierarchical	Profiler.	The	profiler	writes	its	raw	data	into	the	file	called	test.txt	located	in
the	/plshprof/results/	directory.	Finally,	the	profiler	output	is	analyzed	and	recorded	in	its
tables,	and	the	run	ID	is	displayed	on	the	screen	for	later	reference.

When	run,	this	version	of	the	example	produces	the	following	output:
Click	here	to	view	code	image

session	SET	altered.

Elapsed:	00:00:00.001

Inline	pragma	is	not	enabled,	run	ID	-	1

Elapsed:	00:00:00.602

Next,	consider	the	modified	version	of	the	example	in	which	subprogram	inlining	is
enabled.	Changes	are	highlighted	in	bold.

For	Example		ch25_5b.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

1		DECLARE

2				v_num				PLS_INTEGER;

3				v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

4

5				FUNCTION	test_func	(num1	IN	PLS_INTEGER

6																							,num2	IN	PLS_INTEGER)

7				RETURN	PLS_INTEGER

8				IS

9				BEGIN

10					RETURN	(num1	+	num2);

11		END	test_func;

12

13	BEGIN

14			DBMS_HPROF.START_PROFILING	(‘PLSHPROF_DIR’,	‘test.txt’);

15			FOR	i	IN	1..100000

16			LOOP

17					—	Inline	pragma	is	enabled	for	each	function	call

18					PRAGMA	INLINE	(test_func,	‘YES’);

19					v_num	:=	test_func	(i-1,	i);

20			END	LOOP;

21			DBMS_HPROF.STOP_PROFILING;

22

23			—	Analyze	profiler	output	and	display	its	run	ID

24			v_run_id	:=	DBMS_HPROF.ANALYZE	(‘PLSHPROF_DIR’,	‘test.txt’);

25			DBMS_OUTPUT.PUT_LINE	(‘Inline	pragma	is	enabled,	run	ID	-

‘||v_run_id);

26	END;

When	run,	this	version	of	the	example	produces	the	following	output:
Click	here	to	view	code	image

session	SET	altered.

Elapsed:	00:00:00.001

Inline	pragma	is	enabled,	run	ID	–	2

Elapsed:	00:00:00.073

Note	how	much	performance	has	been	gained	in	the	second	run	by	adding	the	PRAGMA
INLINE	statement	without	changing	the	PL/SQL	optimization	level.

As	mentioned	previously,	when	the	PL/SQL	optimization	level	is	set	to	2,	subprogram
inlining	must	be	enabled	explicitly	prior	to	each	subprogram	call.	Hence,	if	the	PRAGMA
INLINE	statement	was	placed	outside	the	loop,	subprogram	inlining	would	not	occur.
This	is	demonstrated	by	the	next	example.	Affected	statements	are	shown	in	bold.

For	Example		ch25_5c.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

1		DECLARE

2				v_num			PLS_INTEGER;

3				v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

4

5				FUNCTION	test_func	(num1	IN	PLS_INTEGER

6																							,num2	IN	PLS_INTEGER)

7				RETURN	PLS_INTEGER

8				IS

9				BEGIN

10				RETURN	(num1	+	num2);

11			END	test_func;

12

13	BEGIN

14			DBMS_HPROF.START_PROFILING	(‘PLSHPROF_DIR’,	‘test.txt’);

15

16			—	Inline	pragma	is	moved	outside	the	loop

17			PRAGMA	INLINE	(test_func,	‘YES’);

18			FOR	i	IN	1..100000

19			LOOP

20					v_num	:=	test_func	(i-1,	i);

21			END	LOOP;

22			DBMS_HPROF.STOP_PROFILING;

23

24			—	Analyze	profiler	output	and	display	its	run	ID

25			v_run_id	:=	DBMS_HPROF.ANALYZE	(‘PLSHPROF_DIR’,	‘test.txt’);

26			DBMS_OUTPUT.PUT_LINE

27					(‘Inline	pragma	is	enabled	for	a	single	call,	run	ID	-

‘||v_run_id);

28	END;

When	run,	this	version	of	the	script	produces	the	following	output:
Click	here	to	view	code	image

session	SET	altered.

Elapsed:	00:00:00.001

Inline	pragma	is	enabled	for	a	single	call,	run	ID	-	3

Elapsed:	00:00:00.490

As	you	can	see,	we	have	lost	almost	all	of	the	performance	gain.

Since	each	example	run	was	profiled	and	analyzed,	let’s	see	what	information	the
PL/SQL	Hierarchical	Profiler	has	gathered:
Click	here	to	view	code	image

SELECT	runid,	function,	line#,	calls,	subtree_elapsed_time	s_e_t

							,function_elapsed_time	f_e_t

		FROM	dbmshp_function_info;

RUNID				FUNCTION																														LINE#					CALLS					S_E_T				F_E_T

–—				–––––––––											–—					––				––			–––-

1								__anonymous_block.TEST_FUNC											5									100000				17461				17461

1								STOP_PROFILING																								63								1									0								0

2								STOP_PROFILING																								63								1									0								0

3								__anonymous_block.TEST_FUNC											5									100000				18327				18327

3								STOP_PROFILING																								63								1									0								0

For	run	IDs	1	and	3,	test_func	was	executed	100,000	times;	in	contrast,	for	run	ID
2,	there	is	no	reference	to	test_func.	In	effect,	at	the	time	of	compilation	the	code	is
revised	to	look	like	the	following	example	(all	changes	are	shown	in	bold):

For	Example		ch25_5d.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

1		DECLARE

2				v_num					PLS_INTEGER;

3				v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

4

5		BEGIN

6				DBMS_HPROF.START_PROFILING	(‘PLSHPROF_DIR’,	‘test.txt’);

7				FOR	i	IN	1..100000

8				LOOP

9						v_num	:=	i-1	+	i;	—	there	is	no	reference	to	test_func

10			END	LOOP;

11			DBMS_HPROF.STOP_PROFILING;

12

13			—	Analyze	profiler	output	and	display	its	run	ID

14			v_run_id	:=	DBMS_HPROF.ANALYZE	(‘PLSHPROF_DIR’,	‘test.txt’);

15			DBMS_OUTPUT.PUT_LINE	(‘Inline	pragma	is	enabled,	run	ID	-

‘||v_run_id);

16	END;

As	mentioned	previously,	setting	the	optimizer	level	to	3	ensures	implicit	subprogram
inlining	whenever	possible.	This	is	demonstrated	by	the	next	example	(modified
statements	are	shown	in	bold):

For	Example		ch25_5e.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	3;

1		DECLARE

2				v_num					PLS_INTEGER;

3				v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

4

5				FUNCTION	test_func	(num1	IN	PLS_INTEGER

6																							,num2	IN	PLS_INTEGER)

7				RETURN	PLS_INTEGER

8				IS

9				BEGIN

10				RETURN	(num1	+	num2);

11			END	test_func;

12

13	BEGIN

14			DBMS_HPROF.START_PROFILING	(‘PLSHPROF_DIR’,	‘test.txt’);

15

16			FOR	i	IN	1..100000

17			LOOP

18					v_num	:=	test_func	(i-1,	i);

19			END	LOOP;

20			DBMS_HPROF.STOP_PROFILING;

21

22			—	Analyze	profiler	output	and	display	its	run	ID

23			v_run_id	:=	DBMS_HPROF.ANALYZE	(‘PLSHPROF_DIR’,	‘test.txt’);

24			DBMS_OUTPUT.PUT_LINE	(‘Inline	pragma	is	enabled	implicitly,	run	ID	-

‘||v_run_id);

25	END;

In	this	version,	PLSQL_OPTIMIZE_LEVEL	has	been	set	to	3	and	the	PL/SQL
compiler	is	able	to	perform	subprogram	inlining	explicitly.	This	is	demonstrated	by	the
script’s	output:
Click	here	to	view	code	image

session	SET	altered.

Elapsed:	00:00:00.001

Inline	pragma	is	enabled	implicitly,	run	ID	-	4

Elapsed:	00:00:00.065

As	you	can	see,	based	on	the	elapsed	time,	it	seems	that	the	compiler	has	performed
subprogram	inlining.	This	fact	can	be	confirmed	by	examining	the	data	produced	by	the
PL/SQL	Hierarchical	Profiler:

Click	here	to	view	code	image

SELECT	runid,	function,	line#,	calls,	subtree_elapsed_time	s_e_t

							,function_elapsed_time	f_e_t

		FROM	dbmshp_function_info

	WHERE	runid	=	4;

RUNID				FUNCTION																							LINE#				CALLS					S_E_T					F_E_T

–—				–––––––––				–—				––				––				–––-

4								STOP_PROFILING																	63							1									0									0

When	the	optimization	level	is	set	to	2	and	subprogram	inlining	is	specified	for	a
particular	function/procedure,	this	feature	does	not	propagate	to	the	procedures/functions
that	are	being	called	from	it.	In	other	words,	if	subprogram	inlining	is	enabled	for
procedure	P1,	and	it	references	functions	F1	and	F2,	these	functions	are	not	enabled	for
inlining.	This	concept	is	illustrated	further	by	the	next	example.

For	Example		ch25_6a.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	2;

1		DECLARE

2				v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

3

4				FUNCTION	f1	(num1	IN	PLS_INTEGER

5																,num2	IN	PLS_INTEGER)

6				RETURN	PLS_INTEGER

7				IS

8				BEGIN

9						RETURN	(num1	+	num2);

10			END	f1;

11

12			FUNCTION	f2	(str1	IN	VARCHAR2

13															,str2	IN	VARCHAR2)

14			RETURN	VARCHAR2

15			IS

16			BEGIN

17					RETURN	(str1||’	‘||str2);

18			END	f2;

19

20			PROCEDURE	p1	(num1	IN	PLS_INTEGER

21																,num2	IN	PLS_INTEGER

22																,str1	IN	VARCHAR2

23																,str2	IN	VARCHAR2)

24			IS

25					v_num	NUMBER;

26					v_str	VARCHAR2(100);

27			BEGIN

28					v_num	:=	f1(num1,	num2);

29					v_str	:=	f2(str1,	str2);

30			END	p1;

31

32	BEGIN

33			DBMS_HPROF.START_PROFILING	(‘PLSHPROF_DIR’,	‘test.txt’);

34			FOR	i	in	1..100000

35			LOOP

36					—	Inline	pragma	is	enabled	for	each	procedure	call

37					PRAGMA	INLINE	(p1,	‘YES’);

38					p1	(i-1,	i,	to_char(i-1),	to_char(i));

39			END	LOOP;

40			DBMS_HPROF.STOP_PROFILING;

41

42			—	Analyze	profiler	output

43			v_run_id	:=	DBMS_HPROF.ANALYZE	(‘PLSHPROF_DIR’,	‘test.txt’);

44			DBMS_OUTPUT.PUT_LINE	(‘Inline	pragma	is	enabled,	run	ID	-

‘||v_run_id);

45	END;

In	this	example,	there	are	two	functions,	f1	and	f2.	These	functions	are	called	by	the
procedure	p1,	which	in	turn	is	called	inside	the	numeric	FOR	LOOP.	Note	that
subprogram	inlining	has	been	explicitly	enabled	for	each	procedure	call.	This	example
produces	the	following	output:
Click	here	to	view	code	image

session	SET	altered.

Elapsed:	00:00:00.001

Inline	pragma	is	enabled,	run	ID	-	5

Elapsed:	00:00:01.179

The	PL/SQL	Hierarchical	Profiler	reports	these	runtime	statistics:
Click	here	to	view	code	image

SELECT	runid,	function,	line#,	calls,	subtree_elapsed_time	s_e_t

							,function_elapsed_time	f_e_t

		FROM	dbmshp_function_info

	WHERE	runid	=	5;

RUNID				FUNCTION																							LINE#				CALLS					S_E_T					F_E_T

–—				–––––––––				–—				––				––				–––-

5								__anonymous_block.F1											4								100000				20595					20595

5								__anonymous_block.F2											12							100000				42010					42010

5								STOP_PROFILING																	63							1									0									0

To	enable	subprogram	inlining	for	functions	f1	and	f2,	PLSQL_OPTIMIZE_LEVEL
should	be	set	to	3	or	a	PRAGMA	INLINE	statement	should	be	executed	prior	to	the
functions’	invocations.	When	the	optimization	level	is	set	to	3,	the	script	produces	this
output:
Click	here	to	view	code	image

session	SET	altered.

Elapsed:	00:00:00.001

Inline	pragma	is	enabled,	run	ID	-	6

Elapsed:	00:00:00.042

The	PL/SQL	Hierarchical	Profiler	reports	these	statistics:
Click	here	to	view	code	image

SELECT	runid,	function,	line#,	calls,	subtree_elapsed_time	s_e_t

							,function_elapsed_time	f_e_t

		FROM	dbmshp_function_info

	WHERE	runid	=	6;

RUNID				FUNCTION																							LINE#				CALLS					S_E_T					F_E_T

–—				–––––––––				–—				––				––				–––-

6								STOP_PROFILING																	63							1									0									0

When	PL/SQL	code	contains	embedded	SQL	statements,	performance	gains	due	to
subprogram	inlining	become	negligible.	This	is	because	oftentimes	SQL	statements	are	the
main	consumers	of	the	execution	time.	Consider	a	modified	version	of	the	preceding
example,	where	SELECT	INTO	statements	have	been	added	to	the	functions	f1	and	f2.
All	changes	are	shown	in	bold.

For	Example		ch25_6b.sql
Click	here	to	view	code	image

SET	TIMING	ON;

ALTER	SESSION	SET	PLSQL_OPTIMIZE_LEVEL	=	3;

1		DECLARE

2				v_run_id	BINARY_INTEGER;	—	run	ID	generated	by	the	profiler

3

4				FUNCTION	f1	(num1	IN	PLS_INTEGER

5																,num2	IN	PLS_INTEGER)

6				RETURN	PLS_INTEGER

7				IS

8						v_num	PLS_INTEGER;

9				BEGIN

10					SELECT	num1	+	num2

11							INTO	v_num

12							FROM	dual;

13					RETURN	v_num;

14			END	f1;

15

16			FUNCTION	f2	(str1	IN	VARCHAR2

17															,str2	IN	VARCHAR2)

18			RETURN	VARCHAR2

19			IS

20					v_srt	VARCHAR2(50);

21			BEGIN

22					SELECT	str1||’	‘||str2

23							INTO	v_str

24							FROM	dual;

25					RETURN	(v_str);

26			END	f2;

27

28			PROCEDURE	p1	(num1	IN	PLS_INTEGER

29																,num2	IN	PLS_INTEGER

30																,str1	IN	VARCHAR2

31																,str2	IN	VARCHAR2)

32			IS

33					v_num	NUMBER;

34					v_str	VARCHAR2(100);

35			BEGIN

36					v_num	:=	f1(num1,	num2);

37					v_str	:=	f2(str1,	str2);

38			END	p1;

39

40	BEGIN

41			DBMS_HPROF.START_PROFILING	(‘PLSHPROF_DIR’,	‘test.txt’);

42			FOR	i	in	1..100000

43			LOOP

44					p1	(i-1,	i,	to_char(i-1),	to_char(i));

45			END	LOOP;

46			DBMS_HPROF.STOP_PROFILING;

47

48			—	Analyze	profiler	output

49			v_run_id	:=	DBMS_HPROF.ANALYZE	(‘PLSHPROF_DIR’,	‘test.txt’);

50			DBMS_OUTPUT.PUT_LINE	(‘Inline	pragma	is	enabled,	run	ID	-

‘||v_run_id);

51	END;

When	run,	the	script	produces	the	following	output:
Click	here	to	view	code	image

session	SET	altered.

Elapsed:	00:00:00.001

Inline	pragma	is	enabled,	run	ID	-	7

Elapsed:	00:00:06.156

Note	how	the	elapsed	time	has	increased	from	.042	to	6.156,	even	though	the	optimization
level	was	set	to	3	for	both	runs.	The	PL/SQL	Hierarchical	Profiler	reports	these	statistics
for	run	ID	7:
Click	here	to	view	code	image

SELECT	runid,	function,	line#,	calls,	subtree_elapsed_time	s_e_t

							,function_elapsed_time	f_e_t

		FROM	dbmshp_function_info

	WHERE	runid	=	7;

RUNID				FUNCTION																							LINE#				CALLS					S_E_T						F_E_T

–—				–––––––––				–—				––				––-				–––-

7								__static_sql_exec_line									44							200000				4382821				4382821

7								STOP_PROFILING																	63							1									0										0

The	PL/SQL	optimizer	was	able	to	apply	subprogram	inlining,	but	performance	was	not
gained	due	to	the	SQL	statement	that	was	executed	on	line	44.	As	expected,	each	SQL
statement	was	executed	100,000	times,	thereby	increasing	the	overall	execution	time
significantly.	The	results	of	this	run	also	highlight	that	in	this	particular	case,	relocating
the	SELECT	INTO	statements	from	functions	f1	and	f2	inside	the	body	of	the	loop
would	not	have	improved	performance.

Summary
In	this	chapter,	you	learned	about	PL/SQL	optimization	levels	and	saw	how	the	PL/SQL
compiler	optimizes	code	based	on	these	levels.	In	addition,	you	explored	the	concept	of
subprogram	inlining	and	considered	in	which	instances	it	may	be	used	to	improve
performance	of	PL/SQL	code.	Finally,	you	learned	how	to	gather	and	interpret	PL/SQL
runtime	statistics	with	the	PL/SQL	Profiler	API	and	PL/SQL	Hierarchical	Profiler.
Combining	these	optimization	techniques	with	the	optimization	methods	such	as	bulk
SQL	allows	you	to	create	robust	and	performant	code.

A.	PL/SQL	Formatting	Guide

This	appendix	summarizes	some	of	the	PL/SQL	formatting	guidelines	used	throughout
this	book.	While	formatting	guidelines	are	not	a	required	part	of	PL/SQL,	they	act	as	best
practices	that	facilitate	development	of	better-quality	code,	greater	readability,	and	easier
maintenance.

Case
PL/SQL,	like	SQL,	is	case	insensitive.	The	general	guidelines	in	regard	to	case	are	as
follows:

	Use	uppercase	for	keywords	(e.g.,	BEGIN,	EXCEPTION,	END,	IF-THEN-ELSE,
LOOP,	END	LOOP),	data	types	(e.g.,	VARCHAR2,	NUMBER),	built-in	functions	(e.g.,
LEAST,	SUBSTR),	and	user-defined	subroutines	(e.g.,	procedures,	functions,
packages).

	Use	lowercase	for	variable	names	as	well	as	column	and	table	names	in	SQL.

White	Space
White	space	(extra	lines	and	spaces)	is	as	important	in	PL/SQL	as	it	is	in	SQL.	It	is	a
major	factor	in	improving	readability.	In	other	words,	you	can	reveal	the	logical	structure
of	the	program	by	using	appropriate	indentation	in	your	code.	Here	are	some	suggestions:

	Put	spaces	on	both	sides	of	an	equality	sign	or	comparison	operator.

	Line	up	structure	words	on	the	left	(e.g.,	DECLARE,	BEGIN,	EXCEPTION,	and
END;	IF	and	END	IF;	LOOP	and	END	LOOP).	In	addition,	indent	three	spaces	(use
the	spacebar,	not	the	tab	key)	for	structures	within	structures.

	Put	blank	lines	between	major	sections	to	separate	them	from	each	other.

	Put	different	logical	parts	of	the	same	structure	on	separate	lines	even	if	the	structure
is	short.	For	example,	IF	and	THEN	are	placed	on	one	line,	while	ELSE	and
END	IF	are	placed	on	separate	lines.

Naming	Conventions
To	ensure	against	conflicts	with	keywords	and	column/table	names,	it	is	helpful	to	use	the
following	prefixes:

	v_variable_name

	con_constant_name

	i_in_parameter_name,	o_out_parameter_name,
io_in_out_parameter_name

	c_cursor_name	or	name_cur

	rc_reference_cursor_name

	r_record_name	or	name_rec

	FOR	r_stud	IN	c_stud	LOOP…

	FOR	stud_rec	IN	stud_cur	LOOP

	type_name	or	name_type	(for	user-defined	types)

	t_table	or	name_tab	(for	PL/SQL	tables)

	rec_record_name	or	name_rec	(for	record	variables)

	e_exception_name	(for	user-defined	exceptions)

The	name	of	a	package	should	be	the	name	of	the	larger	context	of	the	actions
performed	by	the	procedures	and	functions	contained	within	the	package.

The	name	of	a	procedure	should	be	the	action	description	that	is	performed	by	the
procedure.	The	name	of	a	function	should	be	the	description	of	the	return	variable.

For	Example
Click	here	to	view	code	image

PACKAGE	student_admin

		—	admin	suffix	may	be	used	for	administration.

PROCEDURE	remove_student	(i_student_id	IN	student.studid%TYPE);

FUNCTION	student_enroll_count	(i_student_id	student.studid%TYPE)

RETURN	INTEGER;

Comments
Comments	in	PL/SQL	are	as	important	as	they	are	in	SQL.	They	should	explain	the	main
sections	of	the	program	and	any	major	nontrivial	logic	steps.

Use	single-line	comments	“--”	instead	of	the	multiline	“/*”	comments.	While
PL/SQL	treats	these	comments	in	the	same	way,	it	will	be	easier	for	you	to	debug	the	code
once	it	is	complete	because	you	cannot	embed	multiline	comments	within	multiline
comments.	In	other	words,	you	can	comment	out	portions	of	code	that	contain	single-line
comments,	but	you	cannot	comment	out	portions	of	code	that	contain	multiline	comments.

Other	Suggestions
Here	are	a	few	additional	small	recommendations	to	assist	you	in	making	sure	your
PL/SQL	code	is	neat	and	easy	to	follow.

	For	SQL	statements	embedded	in	PL/SQL,	use	the	same	formatting	guidelines	to
determine	how	the	statements	should	appear	in	a	block.

	Provide	a	comment	header	that	explains	the	intent	of	the	block	and	lists	the	creation
date	and	the	author’s	name.	Also	include	a	line	for	each	revision	with	the	author’s
name,	date,	and	the	description	of	the	revision.

The	following	example	shows	the	aforementioned	suggestions.	Notice	that	it	also	uses	a
monospaced	font	(Courier	New)	that	makes	the	formatting	easier.	Proportionally	spaced
fonts	can	hide	spaces	and	make	lining	up	clauses	difficult.	Most	text	and	programming
editors	by	default	use	a	monospaced	font.

For	Example
Click	here	to	view	code	image

REM	**

REM	*	filename:	coursediscount01.sql								version:	1

REM	*	purpose:		To	give	discounts	to	courses	that	have	at

REM	*											least	one	section	with	an	enrollment	of	more

REM	*											than	10	students.

REM	*	args:					none

REM	*

REM	*	created	by:		s.tashi							date:	January	1,	2000

REM	*	modified	by:	y.sonam							date:	February	1,	2000

REM	*	description:	Fixed	cursor,	added	indentation	and

REM	*														comments.

REM	**

DECLARE

		—	C_DISCOUNT_COURSE	finds	a	list	of	courses	that	have

		—	at	least	one	section	with	an	enrollment	of	at	least	10

		—	students.

		CURSOR	c_discount_course	IS

				SELECT	DISTINCT	course_no

						FROM	section	sect

					WHERE	10	<=	(SELECT	COUNT(*)

																				FROM	enrollment	enr

																			WHERE	enr.section_id	=	sect.section_id

);

		—	discount	rate	for	courses	that	cost	more	than	$2000.00

		con_discount_2000	CONSTANT	NUMBER	:=	.90;

		—	discount	rate	for	courses	that	cost	between	$1001.00

		—	and	$2000.00

		con_discount_other	CONSTANT	NUMBER	:=	.95;

		v_current_course_cost	course.cost%TYPE;

		v_discount_all	NUMBER;

		e_update_is_problematic	EXCEPTION;

BEGIN

		—	For	courses	to	be	discounted,	determine	the	current

		—	and	new	cost	values

		FOR	r_discount_course	in	c_discount_course	LOOP

				SELECT	cost

						INTO	v_current_course_cost

						FROM	course

					WHERE	course_no	=	r_discount_course.course_no;

				IF	v_current_course_cost	>	2000	THEN

							v_discount_all	:=	con_discount_2000;

				ELSE

							IF	v_current_course_cost	>	1000	THEN

										v_discount_all	:=		con_discount_other;

							ELSE

										v_discount_all	:=	1;

							END	IF;

				END	IF;

				BEGIN

						UPDATE	course

									SET	cost	=	cost	*	v_discount_all

							WHERE	course_no	=	r_discount_course.course_no;

				EXCEPTION

						WHEN	OTHERS	THEN

								RAISE	e_update_is_problematic;

				END;				—	end	of	sub-block	to	update	record

		END	LOOP;	—	end	of	main	LOOP

		COMMIT;

EXCEPTION

		WHEN	e_update_is_problematic	THEN

				—	Undo	all	transactions	in	this	run	of	the	program

				ROLLBACK;

				DBMS_OUTPUT.PUT_LINE

							(‘There	was	a	problem	updating	a	course	cost.’);

		WHEN	OTHERS	THEN

				NULL;

END;

/

B.	Student	Database	Schema

Table	and	Column	Descriptions
This	appendix	lists	all	the	tables	from	the	STUDENT	database	schema	that	are	used	in	the
book.	Each	table	is	listed	here	with	the	database	table	name	first;	what	follows	are	the
columns	in	that	table,	an	indicator	of	whether	a	null	value	is	allowed,	the	column	data
type,	and	a	description.	The	scripts	to	install	this	database	can	be	found	on	the	companion
website	for	this	book.

COURSE:	Information	for	a	Course

SECTION:	Information	for	an	Individual	Section	(Class)	of	a	Particular	Course

STUDENT:	Profile	Information	for	a	Student

ENROLLMENT:	Information	for	a	Student	Registered	for	a	Particular	Section	of	a
Particular	Course	(Class)

INSTRUCTOR:	Profile	Information	for	an	Instructor

ZIPCODE:	City,	State,	and	ZIP	Code	Information

GRADE_TYPE:	Lookup	Table	of	a	Grade	Type	(Code)	and	its	Description

GRADE_TYPE_WEIGHT:	Information	on	How	the	Final	Grade	for	a	Particular
Section	is	Computed;	For	Example,	the	Midterm	Constitutes	50%,	the	Quiz	10%,	and

the	Final	Examination	40%	of	the	Final	Grade

GRADE:	The	Individual	Grades	a	Student	Received	for	a	Particular	Section	(Class)

GRADE_CONVERSION:	Converts	a	Number	Grade	to	a	Letter	Grade

The	entity–relationship	diagram	for	the	tables	in	the	student	schema	shown	in	Figure	B–1
shows	the	tables	and	their	foreign	key	relationships	using	the	standard	crow’s	feet	arrows.

Figure	B-1

Index

()	(parentheses)

controlling	order	of	operations,	38

grouping	for	readability,	69,	252

&	(ampersand)

in	substitution	variable	names,	20,	22,	25

in	variable	names,	31

:	(colon),	in	bind	arguments,	260

—	(dashes),	single-line	comments,	29,	40

/	(slash),	block	terminator,	16,	264

:=	(colon,	equal	sign),	assignment	operator,	37

‘	‘	(single	quotes),	enclosing	substitution	variables,	25

/*…*/	(slash	asterisk…),	multiline	comments,	29,	40

&&	(double	ampersand),	in	substitution	variable	names,	20,	24,	25

;	(semicolon)

block	terminator,	16–17

SQL	and	PL/SQL	statement	terminator,	264–265

variable	terminator,	36–37

A
ACCESSIBLE	BY	clause,	xxvii–xxviii

Accessors

new	for	Oracle	12c,	xxvii–xxviii

specifying,	xxvii–xxviii

white	lists,	xxvii–xxviii

Actual	parameters,	317–318

AFTER	triggers,	201–204

ALL_DEPENDENCIES	view,	376–377

ALL_OBJECTS	view,	374

ALL_USER_OBJECTS	view,	314–315

ALL_USER_SOURCE	view,	314–315

ALTER	SYSTEM	command,	411

ALTER	TRIGGER	command,	194

Ampersand	(&)

in	substitution	variable	names,	20,	22,	25

in	variable	names,	31

ANALYZE	routine,	437

Anchored	data	types,	34

Anonymous	blocks.	See	also	Modular	code;	Named	blocks.

definition,	5

description,	312

executing,	8

Application	exception,	profiling,	436–437

Application	processing	tier,	3

Architecture.	See	also	Blocks.

application	processing	tier,	3

client-server,	5

data	management	tier,	3

Oracle	server,	2–4

overview,	2–5

presentation	tier,	3

three-tier,	3

Arithmetic	operators,	38

Arrays.	See	Associative	arrays;	Varrays.

Associative	arrays

declaring,	227

EXTEND	method,	233

LIMIT	method,	238

vs.	nested	tables	and	varrays,	239–240

NO_DATA_FOUND	exception,	228–229

of	objects,	populating	with	data,	392

populating,	227

referencing	individual	elements,	227–228

syntax,	226

TRIM	method,	233

upper	bounds,	specifying,	238–239

Attributes	(data),	object	types,	386

Autonomous	transactions,	triggers,	203–204

AUTONOMOUS_TRANSACTION	pragma,	204

B
BACKTRACE_DEPTH	function,	424,	426–427

BACKTRACE_LINE	function,	424,	426–427

BACKTRACE_UNIT	function,	424,	426–427

Batch	processing.	See	Bulk	SQL.

BEFORE	triggers,	195–201

BEGIN	keyword,	7

BEQUEATH	CURRENT_USER	clause,	xxxii

BEQUEATH	DEFINER	clause,	xxxii

Bind	arguments

in	CREATE	TABLE	statements,	263–264

definition,	260

passing	run-time	values	to,	272

Binding,	definition,	9

Binding	collections	with

CLOSE	statements,	306–309

EXECUTE	IMMEDIATE	statements,	299–305

FETCH	statements,	306–309

OPEN-FOR	statements,	306–309

Blank	lines,	inserting	in	output,	242

Blocks

;	(semicolon),	block	terminator,	16

anonymous,	5,	8

binding,	9

compilation	errors,	7–8

creating	subroutines,	5

declaration	section,	6

definition,	5

displaying	variable	values.	See	DBMS_OUTPUT.PUT_LINE	statements.

error	types,	7–8

exception-handling	section,	7–8

executable	section,	6–7

executing,	8–9

named,	5,	8–9

nested,	5,	39–41

runtime	errors,	7–8

sections,	6–8

semantic	checking,	9

sequences	in,	48–49

syntax	checking,	8–9

terminating,	16,	264–265

vs.	transactions,	50,	54–55

VALID	vs.	INVALID,	9

Books	and	publications

Database	Object-Relational	Developer’s	Guide,	385

Oracle	Forms	Developer:	The	Complete	Video	Course,	xxiii

Oracle	PL/SQL	by	Example,	Fifth	Edition,	xvii

Oracle	SQL	by	Example,	414

Oracle	Web	Application	Programming	for	PL/SQL	Developers,	xxiii

Boolean	expressions,	in	WHILE	loops,	101

BROKEN	procedure,	410

Built-in	exceptions,	126–132

BULK	COLLECT	clause,	291–299

BULK	COLLECT	INTO	clause,	xxix

BULK	EXECUTE	IMMEDIATE	statements,	260

BULK	FETCH	statements,	260

Bulk	SQL

BULK	COLLECT	clause,	291–299

DELETE	statements,	in	batches.	See	FORALL	statements.

fetching	results,	291–299

INSERT	statements,	in	batches.	See	FORALL	statements.

limiting	result	sets,	292–293

NO_DATA_FOUND	exception,	292

UPDATE	statements,	in	batches.	See	FORALL	statements.

Bulk	SQL,	FORALL	statements

description,	282–285

error	messages,	displaying,	287–288

exception	handling,	285–288

implicit	loop	counter,	283

INDICES	OF	option,	283,	288

looping,	283,	288–290

SAVE	EXCEPTIONS	option,	285–288

SQL%BULK_EXCEPTIONS	attribute,	286–287

VALUES	OF	option,	289–290

C
Calling	packages,	339–341

CASE	abbreviations.	See	COALESCE	function;	NULLIF	function.

CASE	expressions,	80–84

Case	sensitivity

formatting	guide,	455

passwords,	10

PL/SQL,	29

variables,	29

CASE	statements

Boolean	results.	See	Searched	CASE	statements.

vs.	CASE	expressions,	81–84

description,	72–74

searched	CASE	statements,	74–80

CHANGE	procedure,	410,	412

CHAR	data	type,	35

Character	types,	28

CLEAR_PLSQL_TRACE	routine,	434–436

Client-server	architecture,	5

CLOSE	statements

binding	collections	with,	306–309

closing	cursors,	271–280

Closing

cursor	variables,	349

cursors,	167–168,	170

dynamic	SQL	cursors,	271–280

explicit	cursors,	162,	167–168,	172–173

files,	407

COALESCE	function,	87–89.	See	also	NULLIF	function.

Code	generation,	9

COLLECT	INTO	statements,	260

Collection	methods,	232–235

Collections.	See	also	Tables.

counting	elements,	232–235

defined	on	user-defined	records,	255–256

definition,	225

deleting	elements,	233–235

extending,	231

multilevel,	240–242

in	nested	records,	252–253

NULL	vs.	empty,	232

of	object	types,	391–394

records,	253–256

testing	for	elements,	232–235

upper	bounds,	specifying,	238–239

variable-size	arrays.	See	Varrays.

Collections,	binding	with

CLOSE	statements,	306–309

EXECUTE	IMMEDIATE	statements,	299–305

FETCH	statements,	306–309

OPEN-FOR	statements,	306–309

Colon,	equal	sign	(:=),	assignment	operator,	37

Colon	(:),	in	bind	arguments,	260

Columns

aliases,	175

invisible,	xxxiii–xxxiv

in	a	table,	describing,	377–378

Comments

formatting,	29,	456–459

single-line	vs.	multiline,	29

COMMIT	statements

description,	49–52

placing,	188,	314

in	triggers,	195

Companion	Website,	URL	for,	xviii

Comparing	objects

map	methods,	400–401

order	methods,	401–404

overview,	399–400

Comparison	operators,	38

Compatibility,	record	types,	249–250

Compilation	errors,	7–8,	124–126

Complex	functions,	creating,	328–329

Complex	nested	cursors,	185–187

Compound	triggers

definition,	218

firing	order,	219

resolving	mutating	table	issues,	220–223

restrictions,	219

structure,	218

Conditional	control.	See	CASE	statements;	ELSIF	statements;	IF	statements.

Connecting	to	a	database

SQL	Developer,	10–11

SQL*Plus,	13

Connection	name,	SQL	Developer,	10

Constructor	methods,	395–397

Contiguous	numbers,	generating,	48

CONTINUE	statements,	111–115

CONTINUE	WHEN	statements,	115–118

COUNT	method,	232–235

Counting	collection	elements,	232–235

CREATE	reserved	word,	192–193

CREATE	TABLE	statements,	263–264

CREATE	TYPE	statements,	229–230

Creating

cursor	variables,	345–346,	349–350

error	messages,	149–153

event	triggers	on	PDBs,	xxx

nested	tables,	229–230

object	types,	386–390

procedures,	312–315

triggers,	192–195,	197–201

Creating	functions

complex	functions,	328–329

stored	functions,	322–325

using	a	WITH	clause,	329–330

using	the	UDF	pragma,	330–331

Creating	packages

information	hiding,	335

package	body,	335–336,	337–339

package	specification,	335

package	variables,	367–368

private	elements,	341–344

Creating	user-defined	functions	with	a

WITH	clause,	xxxiv

UDF	pragma,	xxxiv–xxxv

CREDENTIAL	clause,	xxx–xxxi

Currency	conversion	example,	334

CURRVAL	pseudocolumn,	48

Cursor	attributes,	170–174.	See	also	specific	attributes.

Cursor	FOR	loops,	175–177

Cursor	loops

closing	a	cursor,	167–168,	170

explicit	cursors,	165–168

fetching	rows	in	a	cursor,	166–167

opening	a	cursor,	165–166

Cursor	variables

closing,	349

creating,	345–346,	349–350

vs.	cursors,	346

definition,	345

explicit,	345

in	packages,	347–348,	350–352

processing,	346–347

query	results,	printing	automatically,	348

rules	for	using,	353

sharing	result	sets,	348–352

strong	(restrictive),	345–346

weak	(nonrestrictive),	345–346

Cursor-based	records

compatibility,	249–250

creating,	163–165

defining	a	collection	on,	253–255

definition,	163

description,	244–246

Cursors.	See	also	Dynamic	SQL	cursors.

column	aliases,	175

vs.	cursor	variables,	346

definition,	159

explicit,	160

expressions	in	a	select	list,	175

fetch	status,	getting,	170–174

implicit,	160–161

locking	rows	for	update,	187–189

most	recently	opened,	160

number	of	records	fetched,	getting,	170–174

number	of	rows	updated,	getting,	161

open,	detecting,	170–174

parameterized,	183–185

scope,	175

select	list,	175

SQL,	160

tips	for	using,	175

types	of,	159–165

FOR	UPDATE	clause,	187–189

FOR	UPDATE	OF	clause,	189

updating	tables	in	a	database,	187–190

WHERE	CURRENT	OF	clause,	189–190

Cursors,	explicit

associating	with	SELECT	statements,	162

closing,	162,	167–168,	172–173

cursor-based	records,	163–165

declaring,	162–163,	172–173

definition,	160

fetching	rows	in	a	cursor,	162,	166–167,	170–174

naming	conventions,	162–163

opening,	162,	165–166,	172–173

processing,	165–168

record	types,	163–165

records,	163–165

table-based	records,	163

user-defined	records,	168–170

Cursors,	nested

complex,	185–187

looping	through	data,	177–181,	185–187

processing,	177–181

D
Dashes	(—),	single-line	comments,	29,	40

Data	(attributes),	object	types,	386

Data	dictionary,	examining	stored	code

ALL_DEPENDENCIES	view,	376–377

ALL_OBJECTS	view,	374

DBA_DEPENDENCIES	view,	376–377

DBA_OBJECTS	view,	374

debugging,	376

dependencies,	displaying,	376–377

DESC	command,	377–378

describing	columns	in	a	table,	377–378

displaying	errors,	375–376

identifying	procedures,	packages,	and	functions,	377–378

modules	with	duplicate	names.	See	Overloading.

overloading	modules,	378–382

retrieving	specified	line	numbers,	374–375

SHO	ERR	command,	376

USER_DEPENDENCIES	view,	376–377

USER_ERRORS	view,	375–376

USER_OBJECTS	view,	374

Data	dictionary	queries

ALL_USER_OBJECTS	view,	314–315

ALL_USER_SOURCE	view,	314–315

DBA_USER_OBJECTS	view,	314–315

DBA_USER_SOURCE	view,	314–315

displaying	source	code,	314–315

object	information,	314–315

procedure	information,	314–315

USER_OBJECTS	view,	314–315

USER_SOURCE	view,	314–315

Data	management	tier,	3

Data	Manipulation	Language	(DML)

definition,	46

and	transaction	control,	53–55

Data	types

based	on	database	objects.	See	Anchored	data	types.

common,	summary	of,	35–36.	See	also	specific	types.

displaying	maximum	size,	xxx

extended	maximum	size,	xxx

for	file	handles,	407

new	for	Oracle	12c,	xxx

passing	to	procedures,	318

Database	Object-Relational	Developer’s	Guide,	385

Database	triggers.	See	Triggers.

Databases

edition-based	redefinition,	193

erasing	changes.	See	ROLLBACK	statements.

saving	changes.	See	COMMIT	statements.

setting	a	save	point.	See	SAVEPOINT	statements.

STUDENT	schema,	461–468

used	in	this	book,	461–468

DATE	data	type,	36

DBA_DEPENDENCIES	view,	376–377

DBA_OBJECTS	view,	374

DBA_USER_OBJECTS	view,	314–315

DBA_USER_SOURCE	view,	314–315

DBMS_HPROF	package,	436–437

DBMSHPTAB.sql	script,	437

DBMS_JOB	package,	410–412

DBMS_OUTPUT.PUT_LINE	statements,	18–19,	21

DBMS_PROFILER	package,	432–433

DBMS_SQL	package,	417–418

DBMS_TRACE	package,	433–436

DBMS_UTILITY	package,	419–424

DBMS_XPLAN	package,	414–417

Debugging

new	for	Oracle	12c,	xxxvii

stored	code,	376

Declaration	section,	6

DECLARE	keyword,	6

Declaring

associative	arrays,	227

explicit	cursors,	162–163,	172–173

variables,	36–39

varrays,	236–238

exceptions,	137–141

Definer	rights	(DR)	subprogram,	xxvi–xxvii

DELETE	method

deleting	collection	elements,	233–235

deleting	varray	elements,	239

DELETE	statements.	See	also	DML	(Data	Manipulation	Language).

batch	processing.	See	FORALL	statements.

with	BULK	COLLECT	clause,	295

Deleting

collection	elements,	233–235

statements,	295

varray	elements,	239

Delimiters,	29

Dependencies,	displaying,	376–377

DESC	command,	377–378

Development	environment.	See	PL/SQL	Scripts;	SQL	Developer;	SQL*Plus.

DIRECTORY	objects,	defining	LIBRARY	objects	as,	xxx–xxxi

DISABLE	option,	194

Disabling	substitution	variable	verification,	23

Disconnecting	from	a	database

SQL	Developer,	11–12

SQL*Plus,	13

Displaying

code	dependencies,	376–377

code	errors,	375–376

data	type	maximum	size,	xxx

data	type	size,	xxx

error	messages,	287–288

errors,	375–376

invalid	procedures,	315

passwords,	13

procedures,	314–315

source	code,	314–315

stored	code	dependencies,	376–377

variable	values.	See	DBMS_OUTPUT.PUT_LINE	statements.

DML	(Data	Manipulation	Language)

definition,	46

and	transaction	control,	53–55

DML	statements.	See	also	DELETE	statements;	INSERT	statements;	UPDATE
statements.

in	blocks,	47–49

as	triggering	events,	47–49

Double	ampersand	(&&),	in	substitution	variable	names,	20,	24,	25

DR	(definer	rights)	subprogram,	xxvi–xxvii

Duplicate	names.	See	Overloading.

DUP_VALUE_ON_INDEX	exception,	129

Dynamic	SELECT	statements,	259

Dynamic	SQL,	optimizing,	260

Dynamic	SQL	cursors.	See	also	Cursors.

closing,	271–280

fetching	from,	271–280

opening,	271–280

passing	run-time	values	to	bind	arguments,	272

Dynamic	SQL	statements

CLOSE,	271–280

example,	260

FETCH,	271–280

multirow	queries,	271–280

OPEN-FOR,	271–280

passing	NULLS	to,	265–266

single-row	queries,	261–271

terminating,	264

Dynamic	SQL	statements,	EXECUTE	IMMEDIATE

avoiding	ORA	errors,	262–271

binding	collections,	299–305

description,	260–261

RETURNING	INTO	clause,	261–262

USING	clause,	261–262

DYNAMIC_DEPTH	function,	424–426

E
EDITIONABLE	property,	xxxiv,	193

Edition-based	redefinition,	193

ELSIF	statements,	63–67.	See	also	IF	statements.

Empty	vs.	NULL,	232

ENABLE	option,	194

Encapsulation,	386

Erasing	database	changes.	See	ROLLBACK	statements.

Error	handling.	See	also	Error	messages.

compilation	errors,	7–8,	124–126

runtime	errors,	7–8,	124–126,	141–147.	See	also	Exception	propagation;	Exceptions.

Error	isolation,	SQL*Plus,	314

Error	messages.	See	also	Error	handling.

creating,	149–153

displaying,	287–288

getting,	155–158,	424,	428–429

names,	associating	with	numbers,	153–155

references	to	line	numbers	and	keywords,	126

Error	numbers,	getting,	155–158,	424,	428–429

Error	reporting

DBMS_UTILITY	package,	419–424

UTL_CALL_STACK	package,	424–429

Error	types,	7–8

ERROR_DEPTH	function,	424,	428–429

error_message	parameter,	150

ERROR_MSG	function,	424,	428–429

ERROR_NUMBER	function,	424,	428–429

error_number	parameter,	150

Errors,	displaying,	375–376

Event	triggers,	creating	on	PDBs,	xxx

Exception	handling.	See	also	User-defined	exceptions.

built-in,	126–132

EXCEPTION	keyword,	8

EXCEPTION_INIT	pragma,	153–155

file	location	not	valid,	408

filename	not	valid,	408

FORALL	statements,	285–288

INTERNAL_ERROR,	408

invalid	file	handle,	408

invalid	mode,	408

invalid	operation,	408

INVALID_FILEHANDLE,	408

INVALID_MODE,	408

INVALID_OPERATION,	408

INVALID_PATH,	408

predefined,	128–129.	See	also	OTHERS	exception;	specific	exceptions.

raising	implicitly,	127

read	error,	408

READ_ERROR,	408

re-raising,	146–148

scope,	133–137

unspecified	PL/SQL	error,	408

UTL_FILE,	408

write	error,	408

WRITE_ERROR,	408

EXCEPTION	keyword,	8

Exception	propagation,	141–147

Exception-handling	section,	7–8

EXCEPTION_INIT	pragma,	153–155

Exceptions,	raising

explicitly,	144–145

implicitly,	127

re-raising,	147

user-defined,	138

Executable	section,	6–7

EXECUTE	IMMEDIATE	statements

avoiding	ORA	errors,	262–271

binding	collections	with,	299–305

description,	260–261

RETURNING	INTO	clause,	261–262

USING	clause,	261–262

Executing	blocks

overview,	8–9

SQL	Developer,	14–16

Executing	queries

SQL	Developer,	14

SQL*Plus,	15

Execution	times

baseline,	computing,	432–433

for	SQL	and	PL/SQL,	separating,	436–437

EXISTS	method,	232–235

EXIT	statements,	93–97

EXIT	WHEN	statements,	97–98

Explain	plan,	generating,	414–417

Explicit	cursor	variables,	345

Expressions

()	(parentheses),	controlling	order	of	operations,	38

CASE	expressions,	80–84

comparing.	See	COALESCE	function;	NULLIF	function.

in	a	cursor	select	lists,	175

operands,	38

operators,	38–39.	See	also	specific	operators.

EXTEND	method,	231,	232–235

Extending	collections,	232–235

Extending	packages

with	additional	procedures,	353–366

final_grade	function,	355–366

manage_grades	package	specification,	354–356

median_grade	function,	362–365

F
FCLOSE	function,	407

FCLOSE_ALL	procedure,	407

FETCH	command,	166–167

FETCH	FIRST	clause,	xxviii–xxix

FETCH	statements,	271–280,	306–309

Fetch	status,	getting,	170–174

Fetching	records

from	dynamic	SQL	cursors,	271–280

results	in	bulk	SQL,	291–299

rows	in	a	cursor,	166–167

FFLUSH	procedure,	407

File	handle	invalid,	exception,	408

File	location	not	valid	exception,	408

Filename	not	valid,	exception,	408

Files,	accessing	within	PL/SQL,	406–410

FILE_TYPE	data	type,	407

Firing	order,	compound	triggers,	219

Firing	triggers,	192,	194

FIRST	method,	233–235

Flushing	the	data	buffer,	407

FLUSH_PROFILER	routine,	433

FOLLOWS	option,	194

FOPEN	function,	407

FOR	loops.	See	Numeric	FOR	loops.

FOR	reserved	word,	104

FOR	UPDATE	clause,	187–189

FOR	UPDATE	OF	clause,	189

FORALL	statements

description,	282–285

error	messages,	displaying,	287–288

exception	handling,	285–288

implicit	loop	counter,	283

improving	performance,	260

INDICES	OF	option,	283,	288

looping,	283,	288–290

SAVE	EXCEPTIONS	option,	285–288

SQL%BULK_EXCEPTIONS	attribute,	286–287

VALUES	OF	option,	289–290

Formal	parameters,	317–318

FORMAT_CALL_STACK	function,	419–421

FORMAT_ERROR_BACKTRACE	function,	419,	421–422

FORMAT_ERROR_STACK	function,	419,	422–424

Formatting	guide

case	sensitivity,	455

comments,	456–459

naming	conventions,	456–457

white	space,	455–456

Formatting	guide,	for	readability	by	humans

dynamic	SQL	statements,	275

EXCEPTION_INIT	pragma,	155

formatting	IF	statements,	66–67

formatting	SELECT	statements,	275

grouping	with	parentheses,	69,	252

inserting	blank	lines,	242

inserting	blank	spaces,	275

labels	on	nested	blocks,	39–40

labels	on	nested	loops,	120

WORK	keyword,	51–52

%FOUND	attribute,	170–174

Functions.	See	also	Modular	code.

collections	of.	See	Packages.

final_grade	function,	355–366

identifying,	377–378

invoking	in	SQL	statements,	327–328

IR	(invoker	rights),	xxvi–xxvii

median_grade	function,	362–365

optimizing	execution,	329–331

vs.	procedures,	322

syntax,	322–327

user-defined.	See	User-defined	functions.

uses	for,	325–327

Functions,	creating

complex	functions,	328–329

stored	functions,	322–325

using	a	WITH	clause,	329–330

using	the	UDF	pragma,	330–331

G
GET_LINE	procedure,	407

GET_NEXT_RESULT	procedure,	xxxi–xxxii

GET_PLSQL_TRACE_LEVEL	routine,	434–436

Getting	records.	See	Fetching	records.

Grouping	transactions,	49

H
Help,	Oracle	online,	193

Hierarchical	Profiler,	436–437

I
Identifiers,	29,	33–34.	See	also	Variables.

IF	statements.	See	also	ELSIF	statements.

description,	58

formatting	for	readability,	66–67

inner,	67

logical	operators,	68–70

nested,	67–70

outer,	67

IF-THEN	statements

description,	58–60

inner	IF,	67

IF-THEN-ELSE	statements

description,	60–63

outer	IF,	60–63

Implicit	cursors,	160–161

Implicit	statement	results,	xxxi–xxxii

Implicit	statement	results,	generating,	417–418

IN	option,	105–107

IN	OUT	parameter,	316–317

IN	parameter,	315–319

Index-by	tables.	See	Associative	arrays.

INDICES	OF	option,	283,	288

Infinite	loops

definition,	93

simple,	95

WHILE,	100

Information	hiding,	335

INHERIT	ANY	PRIVILEGES	clause,	xxxii–xxxiii

INHERIT	PRIVILEGES	clause,	xxxii–xxxiii

Initializing

nested	tables,	230–232

object	attributes,	389–390

packages,	367–368

Initializing	variables

with	an	assignment	operator,	36–39

with	CASE	expressions,	83–84

to	a	null	value,	32

with	SELECT	INTO	statements,	44–47,	83–84

Inner	IF	statements,	67

INSERT	statements.	See	also	DML	(Data	Manipulation	Language).

batch	processing.	See	FORALL	statements.

with	BULK	COLLECT	clause,	295

Instantiating	packages,	366

INSTEAD	OF	triggers,	206–211

INTERNAL_ERROR	exception,	408

Interpreted	mode	code	generation,	9

INTERVAL	parameter,	411

INTERVAL	procedure,	410

Invalid

file	handle	exception,	408

mode	exception,	408

operation	exception,	408

procedures,	315

INVALID	blocks	vs.	VALID,	9

INVALID_FILEHANDLE	exception,	408

INVALID_MODE	exception,	408

INVALID_OPERATION	exception,	408

INVALID_PATH	exception,	408

Invisible	columns,	xxxiii–xxxiv

IR	(invoker	rights)	unit

creating	views,	xxxii

new	for	Oracle	12c,	xxvi–xxvii,	xxxii–xxxiii

permissions,	xxxii–xxxiii

%ISOPEN	attribute,	170–174

IS_OPEN	function,	407

Iterative	control.	See	CONTINUE	statements;	Loops.

J
JOB	parameter,	411

Job	queue

changing	items	in	the	queue,	410

changing	job	intervals,	410

DBMS_JOB	package,	410–412

disabling	jobs,	410,	412

examining,	412

flagging	jobs	as	broken,	412

forcing	a	job	to	run,	410,	412

job	numbers,	assigning,	411

removing	jobs	from,	410,	412

scheduling	the	next	run	date,	410

submitting	jobs,	410,	411–412

K
keep_errors	parameter,	150

L
Labels	on

nested	blocks,	39–40

nested	loops,	120

Language	components

anchored	data	types,	34

character	types,	28

comments,	29

delimiters,	29

identifiers,	29,	33–34.	See	also	Variables.

lexical	units,	28–29

literals,	29

reserved	words,	29,	32–33

variables,	29–32,	36–39.	See	also	Identifiers;	Substitution	variables.

LAST	method,	233–235

Lexical	units,	28–29

LIBRARY	objects,	defining	as	DIRECTORY	objects,	xxx–xxxi

LIMIT	method,	238,	292–293

Limiting	result	sets,	bulk	SQL,	292–293

Line	terminators,	inserting,	408

Literals

definition,	29

in	expressions,	38

LOB	data	type,	36

Locking	rows	for	update,	187–189

Logical	operators,	39,	68–70

LOGIN_DENIED	exception,	128

LONG	data	type,	36

LONG	RAW	data	type,	36

Loop	labels,	120–122

LOOP	reserved	word,	92

Looping

FORALL	statements,	283,	288–290

INDICES	OF	option,	283,	288

VALUES	OF	option,	289–290

Loops,	nested,	118–120.	See	also	Nested	cursors.

Loops,	numeric	FOR

description,	104–105

IN	option,	105–107

premature	termination,	108–109

REVERSE	option,	107–108

Loops,	simple

description,	92–93

EXIT	statements,	93–97

EXIT	WHEN	statements,	97–98

infinite,	93,	95

inner	loops,	119

RETURN	statements,	96

terminating,	93–98

Loops,	WHILE

Boolean	expressions	as	test	conditions,	101

description,	98–101

infinite,	100

outer	loops,	119

premature	termination,	101–103

M
Map	methods,	400–401

MAX_STRING_SIZE	parameter

displaying	data	type	size,	xxx

Member	methods,	398

Methods	(functions	and	procedures),	386

Modes

code	generation,	9

invalid,	exception,	408

procedure	parameters,	317–318

Modular	code

anonymous	blocks,	312

benefits	of,	312

block	structure,	312

definition,	311

types	of,	312.	See	also	specific	types.

Multilevel	collections,	240–242

Multirow	queries,	271–280

Mutating	table	errors,	214

Mutating	tables

definition,	214

resolving	issues,	215–223

N
Named	blocks,	5,	8–9.	See	also	Anonymous	blocks.

Named	notation,	procedure	parameters,	318–319

Naming	conventions

explicit	cursors,	162–163

formatting	guide,	456–457

variables,	29–30

Native	code,	9

Native	dynamic	SQL.	See	Dynamic	SQL.

Native	mode	code	generation,	9

Nested

blocks,	5,	39–41

collections	in	object	types,	393

cursors,	177–181

IF	statements,	67–70

loops,	118–120

records,	250–253

varrays,	240–242

Nested	cursors

complex,	185–187

looping	through	data,	177–181,	185–187

processing,	177–181

Nested	tables

vs.	associative	arrays	and	varrays,	239–240

creating,	229–230

initializing,	230–232

LIMIT	method,	238

populating	with	the	BULK	COLLECT	clause,	292

upper	bounds,	specifying,	238–239

New	features,	summary	of,	xxv–xxvi.	See	also	specific	features.

:NEW	pseudorecords,	196–199

NEW_LINE	function,	408

NEXT	DATE	procedure,	410

NEXT	method,	233–235

NEXT_DATE	parameter,	411

NEXTVAL	pseudocolumn,	48

NO_DATA_FOUND	exception,	128

associative	arrays,	228–229

bulk	SQL,	292

NONEDITIONABLE	property,	xxxiv,	193

Nonrestrictive	(weak)	cursor	variables,	345–346

NO_PARSE	parameter,	411

Not	null,	constraining	variables	to,	32

%NOTFOUND	attribute,	170–174

Null	condition,	IF-THEN-ELSE	statements,	61–63

Null	values

assigning	to	expressions	in	NULLIF	functions,	86–87

variables,	32

NULL	vs.	empty,	232

NULLIF	function,	84–87.	See	also	COALESCE	function.

NULLS,	passing	to	dynamic	SQL	statements,	265–266

NUMBER	data	type,	35

Numeric	FOR	loops

in	cursors,	175–177

description,	104–105

IN	option,	105–107

premature	termination,	108–109

REVERSE	option,	107–108

NVACHAR2	data	type,	xxx

O
Object	attributes,	initializing,	389–390

Object	instances.	See	Objects.

Object	specification,	388

Object	type	methods

comparing	objects,	399–404

constructor,	395–397

definition,	395

functions	and	procedures,	386

member,	398

parameter,	395

SELF	parameter,	395,	397,	398,	401

static,	398–399

Object	types

attributes	(data),	386

with	collections,	391–394

components	of,	386

creating,	386–390

encapsulation,	386

methods	(functions	and	procedures),	386

nesting	collections	in,	393

Objects

associative	arrays,	populating	with	data,	392

comparing,	399–404

getting	information	about,	314–315

initial	value,	389

schema,	editionable	vs.	noneditionable,	xxxiv

:OLD	pseudorecords,	196–199

Open	cursors,	testing	for,	170–174

Open	files

testing	for,	407

writing	to,	408

OPEN-FOR	statements

binding	collections	with,	306–309

opening	cursors,	271–280

Opening

dynamic	SQL	cursors,	271–280

explicit	cursors,	162,	165–166,	172–173

files,	407

Operands

definition,	38

in	expressions,	38

Operation	invalid,	exception,	408

Operators

definition,	38

in	expressions,	38

precedence,	39

Optimization	levels

examples	of,	439–444

performance	optimizer,	438

PLSQL_OPTIMIZE_LEVEL	parameter,	438

summary	of,	438

Optimizing

dynamic	SQL,	260

function	execution,	329–331

Optimizing	PL/SQL,	tuning	tools

ANALYZE	routine,	437

CLEAR_PLSQL_TRACE	routine,	434–436

computing	execution	time	baseline,	432–433

DBMS_HPROF	package,	436–437

DBMSHPTAB.sql	script,	437

DBMS_PROFILER	package,	432–433

DBMS_TRACE	package,	433–436

FLUSH_PROFILER	routine,	433

GET_PLSQL_TRACE_LEVEL	routine,	434–436

Hierarchical	Profiler,	436–437

PAUSE_PROFILER	routine,	433

Profiler	API,	432–433

profiling	execution	of	applications,	436–437

PROFLOAD.sql	script,	432–433

PROFTAB.sql	script,	432–433

RESUME_PROFILER	routine,	433

separating	execution	times	for	SQL	and	PL/SQL,	436–437

SET_PLSQL_TRACE	routine,	434–436

START_PROFILER	routine,	432–433

START_PROFILING	routine,	437

STOP_PROFILER	routine,	432–433

STOP_PROFILING	routine,	437

Trace	API,	433–436

TRACE_ALL_CALLS	constant,	434–436

TRACE_ALL_EXCEPTIONS	constant,	434–436

TRACE_ALL_SQL	constant,	434–436

TRACE_ENABLED_CALLS	constant,	434–436

TRACE_ENABLED_EXCEPTION	constant,	434–436

TRACE_ENABLED_SQL	constant,	434–436

TRACE_PAUSE	constant,	434–436

TRACE_RESUME	constant,	434–436

TRACE_STOP	constant,	434–436

TRACETAB.sql	script,	433–436

tracing	order	of	execution,	433–436

ORA	errors,	avoiding,	262–271

Oracle	Forms	Developer:	The	Complete	Video	Course,	xxiii

Oracle	online	help,	193

Oracle	PL/SQL	by	Example,	Fifth	Edition,	xvii

Oracle	sequences.	See	Sequences.

Oracle	server,	2–4

Oracle	SQL	by	Example,	414

Oracle	SQL	Developer.	See	SQL	Developer.

Oracle	Web	Application	Programming	for	PL/SQL	Developers,	xxiii

Oracle-supplied	packages

accessing	files	within	PL/SQL,	406–410

DBMS_JOB,	410–412

DBMS_SQL,	417–418

DBMS_XPLAN,	414–417

explain	plan,	generating,	414–417

implicit	statement	results,	generating,	417–418

scheduling	jobs,	410–413

text	file	capabilities,	406–410

UTL_FILE,	406–410

Oracle-supplied	packages,	error	reporting

DBMS_UTILITY	package,	419–424

UTL_CALL_STACK	package,	424–429

Order	methods,	401–404

Order	of	execution,	tracing,	433–436

OTHERS	exception,	131,	155–156.	See	also	SQLCODE	function;	SQLERRM	function.

OUT	parameter,	315–319

Outer	IF	statements,	67

Overloading

construction	methods,	397

modules,	378–382

P
Packages.	See	also	Modular	code.

benefits	of,	334

currency	conversion	example,	334

definition,	333

granting	roles	to,	xxix–xxx

identifying,	377–378

initialization,	367–368

instantiation,	366

manage_grades	package	specification,	354–356

referencing	packaged	elements,	336–337.	See	also	Cursor	variables.

serialization,	368–371

stored,	calling,	339–341

supplied	by	Oracle.	See	Oracle-supplied	packages.

Packages,	creating

information	hiding,	335

package	body,	335–336,	337–339

package	specification,	335

package	variables,	367–368

private	elements,	341–344

Packages,	extending

with	additional	procedures,	353–366

final_grade	function,	355–366

manage_grades	package	specification,	354–356

median_grade	function,	362–365

Parameterized	cursors,	183–185

Parameters,	passing	to	procedures

actual	parameters,	317–318

data	types,	318

default	values,	318–319

formal	parameters,	317–318

modes,	317–318

named	notation,	318–319

OUT	parameter,	315–319

IN	OUT	parameter,	316–317

IN	parameter,	315–319

positional	notation,	318–319

Parentheses	()

controlling	order	of	operations,	38

grouping	for	readability,	69,	252

Parse	trees,	8

Passing

data	types	to	procedures,	318

NULLS	to	dynamic	SQL	statements,	265–266

run-time	values	to	bind	arguments,	272

Passing	parameters	to	procedures

actual	parameters,	317–318

data	types,	318

default	values,	318–319

formal	parameters,	317–318

modes,	317–318

named	notation,	318–319

OUT	parameter,	315–319

IN	OUT	parameter,	316–317

IN	parameter,	315–319

positional	notation,	318–319

Passwords

SQL	Developer,	case	sensitivity,	10

SQL*Plus,	displaying,	13

PAUSE_PROFILER	routine,	433

P-code,	9

PDBs	(pluggable	databases),	xxx

Performance.	See	Optimizing.

Performance	optimizer,	438.	See	also	Optimizing	PL/SQL.

PL/SQL	Scripts,	14–16

PL/SQL	statements,	44.	See	also	SQL	statements;	specific	statements.

PLSQL_CODE_TYPE	parameter,	9

PLSQL_DEBUG	parameter,	xxxvii

$$PLSQL_LINE	directive,	xxxvi–xxxvii

PL/SQL-only	data	types,	xxvi–xxvii

PLSQL_OPTIMIZE_LEVEL	parameter,	438

$$PLSQL_UNIT	directive,	xxxvi–xxxvii

$$PLSQL_UNIT_OWNER	directive,	xxxvi–xxxvii

$$PLSQL_UNIT_TYPE	directive,	xxxvi–xxxvii

Populating	associative	arrays,	227

Positional	notation,	procedure	parameters,	318–319

PRAGMA	INLINE	statement,	445

Pragmas,	definition,	153

PRECEDES	option,	194

Predefined	exceptions,	128–129

Predefined	inquiry	directives,	new	for	Oracle	12c,	xxxvi–xxxvii

Presentation	tier,	3

Primary	key	values,	generating.	See	Sequences.

Printing	query	results	automatically,	348

PRIOR	method,	233–235

Privileges	for	creating	views,	207

Procedures.	See	also	Modular	code.

collections	of.	See	Packages.

creating,	312–315

vs.	functions,	322

getting	information	about,	314–315

identifying,	377–378

invalid,	recompiling,	315

Procedures,	displaying

data	dictionary	queries,	314–315

invalid,	recompiling,	315

invalid	vs.	valid,	315

red	X,	315

with	SQL	Developer,	315

Procedures,	passing	parameters

actual	parameters,	317–318

data	types,	318

default	values,	318–319

formal	parameters,	317–318

modes,	317–318

named	notation,	318–319

OUT	parameter,	315–319

IN	OUT	parameter,	316–317

IN	parameter,	315–319

positional	notation,	318–319

Profiler	API,	432–433

PROFLOAD.sql	script,	432–433

PROFTAB.sql	script,	432–433

PROGRAM_ERROR	exception,	128

PUT	procedure,	408

PUTF	procedure,	408

PUT_LINE	procedure,	408

Q

Queries.	See	SQL	queries.

Query	results

printing	automatically,	348

sharing.	See	Cursor	variables.

R
RAISE	statements

in	conjunction	with	IF	statements,	140

raising	exceptions	explicitly,	144–145

raising	user-defined	exceptions,	138

re-raising	exceptions,	147

RAISE_APPLICATION_ERROR	procedure,	149–153

Raising	exceptions

explicitly,	144–145

implicitly,	127

re-raising	exceptions,	147

user-defined,	138

RAW	data	type,	xxx,	36

Read	error,	exception,	408

Readability	(by	humans)

dynamic	SQL	statements,	275

EXCEPTION_INIT	pragma,	155

formatting	IF	statements,	66–67

formatting	SELECT	statements,	275

grouping	with	parentheses,	69,	252

inserting	blank	lines,	242

inserting	blank	spaces,	275

labels	on	nested	blocks,	39–40

labels	on	nested	loops,	120

WORK	keyword,	51–52

READ_ERROR	exception,	408

Reading

records	from	a	database.	See	Fetching	records.

text	from	an	open	file,	407

Record	types

compatibility,	249–250

cursor	based,	244–246,	249–250,	253–255

explicit	cursors,	163–165

table	based,	244–246,	249–250

user	defined,	246–250,	255–256

Records

collections	of,	253–256

compatibility,	248–250

cursor-based,	163–165

enclosing,	250

explicit	cursors,	163–165

nested,	250–253

reading.	See	Fetching	records.

table-based,	163–165

testing	values	of,	244

user-defined,	168–170

Red	X	on	displayed	procedures,	315

REF	CURSOR	data	type,	345–346.	See	also	Cursor	variables.

REMOVE	procedure,	410,	412

REPLACE	reserved	word,	192–193

Re-raising	exceptions,	146–148

Reserved	words,	29,	32–33

Restricted	mode,	turning	on/off,	411

Restrictive	(strong)	cursor	variables,	345–346

Result	sets,	sharing.	See	Cursor	variables.

Result-caching,	IR	(invoker	rights)	functions,	xxvi–xxvii

RESUME_PROFILER	routine,	433

RETURN	statements,	96

RETURNING	clause,	with	BULK	COLLECT	clause,	295

RETURNING	INTO	clause,	261–262

RETURN_RESULT	procedure,	xxxi–xxxii

REVERSE	option,	107–108

Roles,	granting	to	PL/SQL	packages	and	standalone	subprograms,	xxix–xxx

ROLLBACK	statements,	49–51,	52,	195

%ROWCOUNT	attribute,	170–174

Row-level	triggers,	194,	205–206

Rows,	locking	for	update,	187–189

%ROWTYPE	attribute,	163–165,	244–246

RUN	procedure,	410,	412

Runtime	errors.	See	also	Error	handling;	Exceptions.

vs.	compilation	errors,	124–126

in	a	declaration	section,	142–143.	See	also	Exception	propagation.

definition,	7–8

error	handling,	141–147

in	an	exception-handling	section,	143–144.	See	also	Exception	propagation.

S
SAVE	EXCEPTIONS	option,	285–288

SAVEPOINT	statements

breaking	down	large	PL/SQL	statements,	44

setting	a	save	point,	49–51,	52–53

in	triggers,	195

Saving	database	changes.	See	COMMIT	statements.

Scheduling	jobs,	410–413

Scope

cursors,	175

exceptions,	133–137

labels,	39–41

nested	blocks,	39–41

variables,	39

Searched	CASE	statements

vs.	CASE	statements,	76–80

description,	74–80

Sections	of	blocks,	6–8

SELECT	INTO	statements,	44–47

Select	list,	cursors,	175

SELECT	statements

dynamic,	259.	See	also	Dynamic	SQL.

formatting	for	readability,	275

returning	no	rows,	47

returning	too	many	rows,	47

static,	259

SELF	parameter,	395,	397,	398,	401

Semantic	checking,	9

Semicolon	(;)

block	terminator,	16–17

dynamic	SQL	statement	terminator,	264–265

variable	terminator,	36–37

Sequences

accessing,	48

in	blocks,	48–49

of	contiguous	numbers,	48

definition,	47

drawing	numbers	from,	48

incrementing,	48

uses	for,	47

Serialized	packages,	368–371

SERIALLY_REUSABLE	pragma,	368–371

SET_PLSQL_TRACE	routine,	434–436

Setting	a	save	point.	See	SAVEPOINT	statements.

SHO	ERR	command,	376

SID,	default,	10

Simple	loops

description,	92–93

EXIT	statements,	93–97

EXIT	WHEN	statements,	97–98

infinite,	95

inner	loops,	119

RETURN	statements,	96

terminating,	93–98

Single	quotes	(‘	‘),	enclosing	substitution	variables,	25

Single-row	queries,	261–271

Slash	(/),	block	terminator,	16,	264

Slash	asterisk…	(/*…*/),	multiline	comments,	29,	40

Source	code,	displaying,	314–315

SQL	cursors,	160

SQL	Developer

connecting	to	a	database,	10–11

connection	name,	10

default	SID,	10

definition,	9

disabling	substitution	variable	verification,	23

disconnecting	from	a	database,	11–12

displaying	procedures,	315

executing	a	block,	14–16

executing	a	query,	14

getting	started	with,	10–11

launching,	10

password,	10

substitution	variables,	19–25

user	input	at	runtime.	See	Substitution	variables.

user	name,	10

SQL	queries

implicit	statement	results,	xxxi–xxxii

multirow,	271–280

new	for	Oracle	12c,	xxxi–xxxii

single-row,	261–271

SQL	statements.	See	also	PL/SQL	statements.

;	(semicolon),	statement	terminator,	15

vs.	PL/SQL,	14

SQL%BULK_EXCEPTIONS	attribute,	286–287

SQLCODE	function,	155–158.	See	also	OTHERS	exception;	SQLERRM	function.

SQLERRM	function,	155–158.	See	also	OTHERS	exception;	SQLCODE	function.

SQL*Plus

/	(slash),	block	terminator,	16

;	(semicolon),	block	terminator,	16–17

accessing,	11,	13

connecting	to	a	database,	13

definition,	9

disabling	substitution	variable	verification,	23

disconnecting	from	a	database,	13

error	isolation,	314

executing	a	query,	15

getting	started	with,	11–13

password,	13

substitution	variables,	19–25

sqlplus	command,	13

START_PROFILER	routine,	432–433

START_PROFILING	routine,	437

Statement-level	triggers,	194,	205–206

Statements.	See	PL/SQL	statements.

Static	methods,	398–399

Static	SELECT	statements,	259

STOP_PROFILER	routine,	432–433

STOP_PROFILING	routine,	437

Stored	code,	examining

ALL_DEPENDENCIES	view,	376–377

ALL_OBJECTS	view,	374

with	the	data	dictionary,	374–378

DBA_DEPENDENCIES	view,	376–377

DBA_OBJECTS	view,	374

debugging,	376

dependencies,	displaying,	376–377

DESC	command,	377–378

describing	columns	in	a	table,	377–378

displaying	errors,	375–376

identifying	procedures,	packages,	and	functions,	377–378

overloading	modules,	378–382

retrieving	specified	line	numbers,	374–375

SHO	ERR	command,	376

USER_DEPENDENCIES	view,	376–377

USER_ERRORS	view,	375–376

USER_OBJECTS	view,	374

Stored	functions,	creating,	322–325

Stored	packages,	calling,	339–341

Stored	queries.	See	Views.

String	operators,	39

Strong	(restrictive)	cursor	variables,	345–346

STUDENT	database	schema,	461–468

SUBMIT	procedure,	410

Submitting	jobs,	410,	411–412.	See	also	Job	queue.

Subprogram	inlining,	445–453

Subprograms,	granting	roles	to,	xxix–xxx

Substitution	variables.	See	also	Variables.

‘	‘	(single	quotes),	enclosing	in,	25

&	(ampersand),	name	prefix,	20,	22,	25

&&	(double	ampersand),	name	prefix,	20,	24,	25

disabling,	25

disabling	verification,	23

name	prefix	character,	changing,	25

overview,	19–25

Syntax	checking,	8–9

Syntax	errors.	See	Compilation	errors.

T
Table-based	records

compatibility,	249–250

creating,	163–165

definition,	163

description,	244–246

Tables

mutating,	213–223

PL/SQL,	226.	See	also	Associative	arrays;	Nested	tables.

Tables,	nested

vs.	associative	arrays	and	varrays,	239–240

creating,	229–230

initializing,	230–232

LIMIT	method,	238

upper	bounds,	specifying,	238–239

Text	file	capabilities,	406–410

Three-tier	architecture,	3

TOO_MANY_ROWS	exception,	128

Trace	API,	433–436

TRACE_ALL_CALLS	constant,	434–436

TRACE_ALL_EXCEPTIONS	constant,	434–436

TRACE_ALL_SQL	constant,	434–436

TRACE_ENABLED_CALLS	constant,	434–436

TRACE_ENABLED_EXCEPTION	constant,	434–436

TRACE_ENABLED_SQL	constant,	434–436

TRACE_PAUSE	constant,	434–436

TRACE_RESUME	constant,	434–436

TRACE_STOP	constant,	434–436

TRACETAB.sql	script,	433–436

Tracing	order	of	execution,	433–436

Transaction	control

and	DML,	53–55

erasing	changes.	See	ROLLBACK	statements.

saving	changes.	See	COMMIT	statements.

setting	a	save	point.	See	SAVEPOINT	statements.

Transactional	control	statements,	from	triggers,	195

Transactions

vs.	blocks,	50,	54–55

breaking	down	large	statements,	44

definition,	43

grouping,	49

Triggering	events,	192

Triggers.	See	also	Modular	code.

AFTER,	201–204

autonomous	transactions,	203–204

BEFORE,	195–201

compound,	217–223

creating,	192–195,	197–201

defined	on	views,	206–211

definition,	192

in	dropped	tables,	195

enabling/disabling,	194

event,	xxx

firing,	192

firing	order,	specifying,	194

INSTEAD	OF	clause,	206–211

issuing	transactional	control	statements,	195

mutating	table	errors,	214–223

:NEW	pseudorecords,	196–199

:OLD	pseudorecords,	196–199

restrictions,	195

row-level,	194,	205–206

statement-level,	194,	205–206

types	of,	205–211

uses	for,	195

TRIM	method,	233–235

Tuning	PL/SQL.	See	Optimizing	PL/SQL,	tuning	tools.

TYPE	statements,	247–248

U
UDF	pragma

creating	functions,	330–331

creating	user-defined	functions,	xxxiv–xxxv

Undoing	database	changes.	See	ROLLBACK	statements.

Unique	numbers,	generating,	47–49

UPDATE	statements.	See	also	DML	(Data	Manipulation	Language).

batch	processing.	See	FORALL	statements.

with	BULK	COLLECT	clause,	295

Updating	tables	in	a	database,	187–190.	See	also	UPDATE	statements.

User	name,	SQL	Developer,	10

User-defined	exceptions

declaring,	137

description,	137–141

raising	explicitly,	138–139

unhandled,	145

User-defined	functions

creating	with	a	UDF	pragma,	xxxiv–xxxv

creating	with	a	WITH	clause,	xxxiv

running	under	SQL,	xxxiv–xxxv

User-defined	records

compatibility,	249–250

defining	a	collection	on,	255–256

description,	168–170,	246–249

USER_DEPENDENCIES	view,	376–377

USER_ERRORS	view,	375–376

USER_OBJECTS	view,	314–315,	374

USER_SOURCE	view,	314–315

USING	clause,	261–262

UTL_CALL_STACK	package,	424–429

UTL_FILE	package,	406–410

V
VALID	blocks	vs.	INVALID,	9

VALUE_ERROR	exception,	129

VALUES	OF	option,	289–290

VARCHAR2	data	type,	xxx,	35

Variables.	See	also	Identifiers;	Substitution	variables.

;	(semicolon),	variable	terminator,	36–37

case	sensitivity,	29

constraining	to	not	null,	32

declaring,	36–39

displaying	values.	See	DBMS_OUTPUT.PUT_LINE	statements.

in	expressions,	38

with	identical	names,	121–122

naming	conventions,	29–30

null	values,	32

overview,	29–32

scope,	39

visibility,	40

Variables,	initializing

with	an	assignment	operator,	36–39

with	CASE	expressions,	83–84

to	a	null	value,	32

with	SELECT	INTO	statements,	44–47,	83–84

Varrays

declaring,	236–238

definition,	235–236

nested,	240–242

vs.	nested	tables	and	associative	arrays,	239–240

upper	bounds,	setting,	238–239

View	queries,	208.	See	also	SELECT	statements.

Views,	creating

BEQUEATH	CURRENT_USER	clause,	xxxii

BEQUEATH	DEFINER	clause,	xxxii

as	an	IR	(invoker	rights)	unit,	xxxii

new	for	Oracle	12c,	xxxii

privileges	for,	207

Views,	triggers	defined	on,	206–211

Visibility	of	variables,	40

W
Weak	(nonrestrictive)	cursor	variables,	345–346

Website,	companion	to	this	book.	See	Companion	Website.

WHAT	parameter,	411

WHERE	CURRENT	OF	clause,	189–190

WHILE	loops

Boolean	expressions	as	test	conditions,	101

description,	98–101

infinite,	100

outer	loops,	119

premature	termination,	101–103

WHILE	reserved	word,	99

White	space,	formatting	guide,	455–456

WITH	clause

creating	functions,	329–330

creating	user-defined	functions,	xxxiv

WORK	keyword,	for	readability,	51–52

Write	error,	exception,	408

WRITE_ERROR	exception,	408

Z

ZERO_DIVIDE	exception,	128

Code	Snippets

	About This eBook
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	About the Companion Website
	What You Will Need
	About the Sample Schema

	Acknowledgments
	About the Authors
	Introduction to PL/SQL New Features in Oracle 12c
	Invoker’s Rights Functions Can Be Result-Cached
	More PL/SQL-Only Data Types Can Cross the PL/SQL-to-SQL Interface Clause
	ACCESSIBLE BY Clause
	FETCH FIRST Clause
	Roles Can Be Granted to PL/SQL Packages and Stand-Alone Subprograms
	More Data Types Have the Same Maximum Size in SQL and PL/SQL
	Database Triggers on Pluggable Databases
	LIBRARY Can Be Defined as a DIRECTORY Object and with a CREDENTIAL Clause
	Implicit Statement Results
	BEQUEATH CURRENT_USER Views
	INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES Privileges
	Invisible Columns
	Objects, Not Types, Are Editioned or Noneditioned
	PL/SQL Functions That Run Faster in SQL
	Predefined Inquiry Directives $$PLSQL_UNIT_OWNER and $$PLSQL_UNIT_TYPE
	Compilation Parameter PLSQL_DEBUG Is Deprecated

	1. PL/SQL Concepts
	Lab 1.1: PL/SQL Architecture
	PL/SQL Architecture
	PL/SQL Block Structure
	How PL/SQL Gets Executed

	Lab 1.2: PL/SQL Development Environment
	Getting Started with SQL Developer
	Getting Started with SQL*Plus
	Executing PL/SQL Scripts

	Lab 1.3: PL/SQL: The Basics
	DBMS_OUTPUT.PUT_LINE Statement
	Substitution Variable Feature

	Summary

	2. PL/SQL Language Fundamentals
	Lab 2.1: PL/SQL Programming Fundamentals
	PL/SQL Language Components
	PL/SQL Variables
	PL/SQL Reserved Words
	Identifiers in PL/SQL
	Anchored Data Types
	Declare and Initialize Variables
	Scope of a Block, Nested Blocks, and Labels

	Summary

	3. SQL in PL/SQL
	Lab 3.1: DML Statements in PL/SQL
	Initialize Variables with SELECT INTO
	Using the SELECT INTO Syntax for Variable Initialization
	Using DML in a PL/SQL Block
	Using a Sequence in a PL/SQL Block

	Lab 3.2: Transaction Control in PL/SQL
	Using COMMIT, ROLLBACK, and SAVEPOINT
	Putting Together DML and Transaction Control

	Summary

	4. Conditional Control: IF Statements
	Lab 4.1: IF Statements
	IF-THEN Statements
	IF-THEN-ELSE Statement

	Lab 4.2: ELSIF Statements
	Lab 4.3: Nested IF Statements
	Logical Operators

	Summary

	5. Conditional Control: CASE Statements
	Lab 5.1: CASE Statements
	CASE Statements
	Searched CASE Statements

	Lab 5.2: CASE Expressions
	Lab 5.3: NULLIF and COALESCE Functions
	NULLIF Function
	COALESCE Function

	Summary

	6. Iterative Control: Part I
	Lab 6.1: Simple Loops
	EXIT Statement
	EXIT WHEN Statement

	Lab 6.2: WHILE Loops
	Using WHILE Loops
	Premature Termination of the WHILE Loop

	Lab 6.3: Numeric FOR Loops
	Using the IN Option in the Loop
	Using the REVERSE Option in the Loop
	Premature Termination of the Numeric FOR Loop

	Summary

	7. Iterative Control: Part II
	Lab 7.1: CONTINUE Statement
	Using CONTINUE Statement
	CONTINUE WHEN Statement

	Lab 7.2: Nested Loops
	Using Nested Loops
	Using Loop Labels

	Summary

	8. Error Handling and Built-in Exceptions
	Lab 8.1: Handling Errors
	Lab 8.2: Built-in Exceptions
	Summary

	9. Exceptions
	Lab 9.1: Exception Scope
	Lab 9.2: User-Defined Exceptions
	Lab 9.3: Exception Propagation
	Re-raising Exceptions

	Summary

	10. Exceptions: Advanced Concepts
	Lab 10.1: RAISE_APPLICATION_ERROR
	Lab 10.2: EXCEPTION_INIT Pragma
	Lab 10.3: SQLCODE and SQLERRM
	Summary

	11. Introduction to Cursors
	Lab 11.1: Types of Cursors
	Making Use of an Implicit Cursor
	Making Use of an Explicit Cursor

	Lab 11.2: Cursor Loop
	Processing an Explicit Cursor
	Making Use of a User-Defined Record
	Making Use of Cursor Attributes

	Lab 11.3: Cursor FOR LOOPS
	Making Use of Cursor FOR LOOPS

	Lab 11.4: Nested Cursors
	Processing Nested Cursors

	Summary

	12. Advanced Cursors
	Lab 12.1: Parameterized Cursors
	Cursors with Parameters

	Lab 12.2: Complex Nested Cursors
	Lab 12.3: FOR UPDATE and WHERE CURRENT Cursors
	FOR UPDATE Cursor
	FOR UPDATE OF in a Cursor
	WHERE CURRENT OF in a Cursor

	Summary

	13. Triggers
	Lab 13.1: What Triggers Are
	Database Trigger
	BEFORE Triggers
	AFTER Triggers
	Autonomous Transaction

	Lab 13.2: Types of Triggers
	Row and Statement Triggers
	INSTEAD OF Triggers

	Summary

	14. Mutating Tables and Compound Triggers
	Lab 14.1: Mutating Tables
	What Is a Mutating Table?
	Resolving Mutating Table Issues

	Lab 14.2: Compound Triggers
	What Is a Compound Trigger?
	Resolving Mutating Table Issues with Compound Triggers

	Summary

	15. Collections
	Lab 15.1: PL/SQL Tables
	Associative Arrays
	Nested Tables
	Collection Methods

	Lab 15.2: Varrays
	Lab 15.3: Multilevel Collections
	Summary

	16. Records
	Lab 16.1: Record Types
	Table-Based and Cursor-Based Records
	User-Defined Records
	Record Compatibility

	Lab 16.2: Nested Records
	Lab 16.3: Collections of Records
	Summary

	17. Native Dynamic SQL
	Lab 17.1: EXECUTE IMMEDIATE Statements
	Using the EXECUTE IMMEDIATE Statement
	How to Avoid Common ORA Errors When Using EXECUTE IMMEDIATE

	Lab 17.2: OPEN-FOR, FETCH, and CLOSE Statements
	Opening Cursor
	Fetching from a Cursor
	Closing a Cursor

	Summary

	18. Bulk SQL
	Lab 18.1: FORALL Statements
	Using FORALL Statements
	SAVE EXCEPTIONS Option
	INDICES OF Option
	VALUES OF Option

	Lab 18.2: The BULK COLLECT Clause
	Lab 18.3: Binding Collections in SQL Statements
	Binding Collections with EXECUTE IMMEDIATE Statements
	Binding Collections with OPEN-FOR, FETCH, and CLOSE Statements

	Summary

	19. Procedures
	Benefits of Modular Code
	Block Structure
	Anonymous Blocks

	Lab 19.1: Creating Procedures
	Putting Procedure Creation Syntax into Practice
	Querying the Data Dictionary for Information on Procedures

	Lab 19.2: Passing Parameters IN and OUT of Procedures
	Using IN and OUT Parameters with Procedures

	Summary

	20. Functions
	Lab 20.1: Creating Functions
	Creating Stored Functions
	Making Use of Functions

	Lab 20.2: Using Functions in SQL Statements
	Invoking Functions in SQL Statements
	Writing Complex Functions

	Lab 20.3: Optimizing Function Execution in SQL
	Defining a Function Using the WITH Clause
	Creating a Function with the UDF Pragma

	Summary

	21. Packages
	Lab 21.1: Creating Packages
	Creating Package Specifications
	Creating Package Bodies
	Calling Stored Packages
	Creating Private Objects

	Lab 21.2: Cursor Variables
	Lab 21.3: Extending the Package
	Extending the Package with Additional Procedures

	Lab 21.4: Package Instantiation and Initialization
	Creating Package Variables During Initialization

	Lab 21.5: SERIALLY_REUSABLE Packages
	Using the SERIALLY_REUSABLE Pragma

	Summary

	22. Stored Code
	Lab 22.1: Gathering Information about Stored Code
	Getting Stored Code Information from the Data Dictionary
	Overloading Modules

	Summary

	23. Object Types in Oracle
	Lab 23.1: Object Types
	Creating Object Types
	Using Object Types with Collections

	Lab 23.2: Object Type Methods
	Constructor Methods
	Member Methods
	Static Methods
	Comparing Objects

	Summary

	24. Oracle-Supplied Packages
	Lab 24.1: Extending Functionality with Oracle-Supplied Packages
	Accessing Files within PL/SQL with UTL_FILE
	Scheduling Jobs with DBMS_JOB
	Generating an Explain Plan with DBMS_XPLAN
	Generating Implicit Statement Results with DBMS_SQL

	Lab 24.2: Error Reporting with Oracle-Supplied Packages
	Using the DBMS_UTILITY Package for Error Reporting
	Using the UTL_CALL_STACK Package for Error Reporting

	Summary

	25. Optimizing PL/SQL
	Lab 25.1: PL/SQL Tuning Tools
	PL/SQL Profiler API
	Trace API
	PL/SQL Hierarchical Profiler

	Lab 25.2: PL/SQL Optimization Levels
	Lab 25.3: Subprogram Inlining
	Summary

	A. PL/SQL Formatting Guide
	Case
	White Space
	Naming Conventions
	Comments
	Other Suggestions

	B. Student Database Schema
	Table and Column Descriptions

	Index
	Code Snippets

